Browse > Article
http://dx.doi.org/10.12989/sem.2022.84.1.101

Machine learning techniques for prediction of ultimate strain of FRP-confined concrete  

Tijani, Ibrahim A. (Applied Laboratory for Advanced Materials & Structures (ALAMS), School of Engineering, The University of British Columbia)
Lawal, Abiodun I. (Department of Energy Resources Engineering, Inha University)
Kwon, S. (Department of Energy Resources Engineering, Inha University)
Publication Information
Structural Engineering and Mechanics / v.84, no.1, 2022 , pp. 101-111 More about this Journal
Abstract
It is widely known that axially loaded fiber-reinforced polymer (FRP) confined concrete presents significant and enhanced mechanical properties with reference to the unconfined concrete. Therefore, to predict the mechanical behavior of FRP-confined concrete two quantities-peak strength and ultimate strain are required. Despite the significant advances, the determination of the ultimate strain of FRP-confined concrete is one of the most challenging problems to be resolved. This is often attributed to our persistence in desiring the conventional methods as the sole technique to examine this phenomenon and the complex nature of the ultimate strain of FRP-confined concrete. To bridge the research gap, this study adopted two machine learning (ML) techniques-artificial neural network (ANN) and Gaussian process regression (GPR)-to analyze observations obtained from 627 datasets of FRP-confined concrete circular and non-circular sections under axial loading test. Besides, the techniques are also used to predict the ultimate strain of FRP-confined concrete. Seven parameters namely width/diameter of the specimens, corner radius ratio, the strength of concrete, FRP elastic modulus, FRP thickness, FRP tensile rupture strain, and the axial strain of unconfined concrete-are the input parameters used to predict the ultimate strain of FRP-confined concrete. The results of the current study highlight the merit of using AI techniques in structural engineering applications given their extraordinary ability to comprehend multidimensional phenomena of FRP-confined concrete structures with ease, low computational cost, and high performance over the existing empirical models.
Keywords
artificial neural network; concrete; Gaussian process regression; prediction; ultimate strain;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Lam, L. and Teng, J.G. (2003b), "Design-oriented stress-strain model for frp-confined concrete", Constr. Build. Mater., 17(6-7), 471-489. https://doi.org/10.1016/S0950-0618(03)00045-X.   DOI
2 Lawal, A.I. (2020), "An artificial neural network-based mathematical model for the prediction of blast-induced ground vibration in granite quarries in Ibadan, Oyo State, Nigeria", Scientif. Afri., 8, e00413. https://doi.org/10.1016/j.sciaf.2020.e00413.   DOI
3 Abbasnia, R. and Ziaadiny, H. (2010), "Behavior of concrete prisms confined with FRP composites under axial cyclic compression", Eng. Struct., 32(3), 648-655. https://doi.org/10.1016/j.engstruct.2009.11.011.   DOI
4 Akogbe, R.K., Liang, M. and Wu, Z.M. (2011), "Size effect of axial compressive strength of cfrp confined concrete cylinders", Int. J. Concrete Struct. Mater., 5(1), 49-55. https://doi.org/10.4334/ijcsm.2011.5.1.049.   DOI
5 Lawal, A.I., Kwon, S., Aladejare, A.E. and Oniyide, G.O. (2022), "Prediction of the static and dynamic mechanical properties of sedimentary rock using GPR, ANN, and response surface method", Geomech. Eng., 28(3), 313-324. https://doi.org/10.12989/gae.2022.28.3.313.   DOI
6 Lawal, A.I. and Kwon, S. (2021), "Application of artificial intelligence in rock mechanics: An overview", J. Rock Mech. Geotech. Eng., 13(1), 248-266. https://doi.org/10.1016/j.jrmge.2020.05.010.   DOI
7 Shahmansouri, A.A., Yazdani, M., Ghanbari, S., Bengar, H.A., Jafari, A. and Ghatte H.F. (2021), "Artificial neural network model to predict the compressive strength of eco-friendly geopolymer concrete incorporating silica fume and natural zeolite", J. Clean. Prod., 279, 123697. https://doi.org/10.1016/j.jclepro.2020.123697.   DOI
8 Lawal, A.I. and Idris, M.A. (2020), "An artificial neural network-based mathematical model for the prediction of blast-induced ground vibrations", Int. J. Environ. Stud., 77(2), 318-334. https://doi.org/10.1080/00207233.2019.1662186.   DOI
9 Lawal, A.I., Kwon, S., Hammed, O.S. and Idris, M.A. (2021a), "Blast-induced ground vibration prediction in granite quarries: An application of gene expression programming, ANFIS, and sine cosine algorithm optimized ANN", Int. J. Min. Sci. Technol., 31(2), 265-277. https://doi.org/10.1016/j.ijmst.2021.01.007.   DOI
10 Lawal, A.I., Olajuyi, S.I., Kwon, S., Aladejare, A.E. and Edo, T.M. (2021b), "Prediction of blast-induced ground vibration using GPR and blast-design parameters optimization based on novel grey-wolf optimization algorithm", Acta Geophy., 69(4), 1313-1324. https://doi.org/10.1007/s11600-021-00607-4.   DOI
11 Li, P., Sui, L., Xing, F., Li, M., Zhou, Y.W. and Wu, Y.F. (2019), "Stress-Strain relation of FRP-confined predamaged concrete prisms with square sections of different corner radii subjected to monotonic axial compression", J. Compos. Constr., 23(2), 04019001. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000921.   DOI
12 Li, P., Wu, Y.F., Zhou, Y.W. and Xing, F. (2018), "Cyclic stress-strain model for FRP-confined concrete considering post-peak softening", Compos. Struct., 201, 902-915. https://doi.org/10.1016/j.compstruct.2018.06.088.   DOI
13 Masia, M.J., Gale, T.N. and Shrive, N.G. (2004), "Size effects in axially loaded square-section concrete prisms strengthened using carbon fibre reinforced polymer wrapping", Can. J. Civil Eng., 31(1), 1-13. https://doi.org/10.1139/l03-064.   DOI
14 Ilki, A. and Kumbasar, N. (2003). "Compressive behaviour of carbon fibre composite jacketed concrete with circular and non-circular cross-sections", J. Earthq. Eng., 7(3), 381-406. https://doi.org/10.1080/13632460309350455.   DOI
15 Ashrafian, A., Amiri, M.J.T., Rezaie-Balf, M., Ozbakkaloglu, T. and Lotfi-Omran, O. (2018), "Prediction of compressive strength and ultrasonic pulse velocity of fiber reinforced concrete incorporating nano silica using heuristic regression methods", Constr. Build. Mater., 190, 479-494. https://doi.org/10.1016/j.conbuildmat.2018.09.047.   DOI
16 Chaallal, O., Shahawy, M. and Hassan, M. (2003), "Performance of axially loaded short rectangular columns strengthened with carbon fiber-reinforced polymer wrapping", J. Compos. Constr., 7(3), 200-208. https://doi.org/10.1061/(ASCE)1090-0268(2003)7:3(200).   DOI
17 Fine, T.L. (1999), Feedforward Neural Network Methodology, Springer, New York, NY.
18 Jong, Y.H. and Lee, C.I. (2004), "Influence of geological conditions on the powder factor for tunnel blasting", Int. J. Rock Mech. Min. Sci., 41, 533-538. https://doi.org/10.1016/j.ijrmms.2004.03.095.   DOI
19 Adegoke, M., Wong, H.T., Leung, C.S. and Sum, J. (2021), "Two noise-tolerant incremental learning algorithms for single-layer feed-forward neural networks", J. Ambient Intel. Humaniz. Comput., 1-15. https://doi.org/10.1007/s12652-019-01488-8.   DOI
20 Adegoke, M., Wong, H.T. and Leung, C.S. (2021), "A fault aware broad learning system for concurrent network failure situations", IEEE Access, 9, 46129-46142. https://doi.org/10.1109/ACCESS.2021.3066217.   DOI
21 Almusallam, T.H. (2007), "Behavior of normal and high-strength concrete cylinders confined with E-glass/epoxy composite laminates", Compos. Part B: Eng., 38(5-6), 629-639. https://doi.org/10.1016/j.compositesb.2006.06.021.   DOI
22 Alpaydin, E. (2014), Introduction to Machine Learning, Third Edition, MIT Press.
23 Benzaid, R., Chikh, N.E. and Mesbah, H. (2008), "Behaviour of square concrete column confined with GFRP composite warp", J. Civil Eng. Manage., 14(2), 115-120. https://doi.org/10.3846/1392-3730.2008.14.6.   DOI
24 Cao, Y.G., Wu, Y.F. and Li, X.Q. (2016), "Unified model for evaluating ultimate strain of FRP confined concrete based on energy method", Constr. Build. Mater., 103, 23-35. https://doi.org/10.1016/j.conbuildmat.2015.11.042.   DOI
25 Claeskens, G. and Hjort N.L. (2001), Model Selection and Model Averaging, Cambridge University Press.
26 Gershman, S.J. and Blei, D.M. (2012), "A tutorial on bayesian nonparametric models", J. Math. Psych., 56(1), 1-12. https://doi.org/10.1016/j.jmp.2011.08.004.   DOI
27 Ilki, A., Peker, O., Karamuk, E., Demir, C. and Kumbasar, N. (2008), "FRP retrofit of low and medium strength circular and rectangular reinforced concrete columns", J. Mater. Civil Eng., 20(2), 169-188. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:2(169).   DOI
28 Cui, C. and Sheikh, S.A. (2010), "Experimental study of normal-and high-strength concrete confined with fiber-reinforced polymers", J. Compos. Constr., 14(5), 553-561. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000116.   DOI
29 Harries, K.A. and Carey S.A. (2003), "Shape and "Gap" effects on the behavior of variably confined concrete", Cement Concrete Res., 33(6), 881-890. https://doi.org/10.1016/S0008-8846(02)01085-2.   DOI
30 Ilki, A., Kumbasar, N. and Koc, V. (2004), "Low strength concrete members externally confined with FRP sheets", Struct Eng. Mech., 18(2), 167-194. https://doi.org/10.12989/sem.2004.18.2.167.   DOI
31 Karabinis, A.I. and Rousakis, T.C. (2002), "Concrete confined by FRP material: A plasticity approach", Eng. Struct., 24(7), 923-932. https://doi.org/10.1016/S0141-0296(02)00011-1.   DOI
32 Lam, L. and Teng, J.G. (2003a), "Design-oriented stress-strain model for FRP-confined concrete in rectangular columns", J. Reinf. Plast. Compos., 22(13), 1149-1186. https://doi.org/10.1177/0731684403035429.   DOI
33 Lam, L. and Teng, J.G. (2004), "Ultimate condition of fiber reinforced polymer-confined concrete", J. Compos. Constr., 8(6), 539-548. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:6(539).   DOI
34 Lam, L., Teng, J.G., Cheung, C.H. and Xiao, Y. (2006), "FRP-confined concrete under axial cyclic compression", Cement Concerete Compos., 28(10), 949-958. https://doi.org/10.1016/j.cemconcomp.2006.07.007.   DOI
35 Shan, B., Gui, F.C., Monti, G. and Xiao, Y. (2019), "Effectiveness of CFRP confinement and compressive strength of square concrete columns", J. Compos. Constr., 23(6), 04019043. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000967.   DOI
36 Lawal, A.I., Aladejare, A.E., Onifade, M., Bada, S. and Idris, M.A. (2020), "Predictions of elemental composition of coal and biomass from their proximate analyses using ANFIS, ANN and MLR", Int. J. Coal Sci. Technol., 8, 124-140. https://doi.org/10.1007/s40789-020-00346-9.   DOI
37 Said, K.O., Onifade, M., Lawal, A.I. and Githiria, J.M. (2020), "An artificial intelligence-based model for the prediction of spontaneous combustion liability of coal based on its proximate analysis", Combus. Sci. Technol., 193(13), 2350-2367. https://doi.org/10.1080/00102202.2020.1736577.   DOI
38 Schulz, E., Speekenbrink, M. and Krause A. (2018), "A tutorial on Gaussian process regression: modelling, exploring, and exploiting functions", J. Math. Psych., 85, 1-16. https://doi.org/10.1016/j.jmp.2018.03.001.   DOI
39 Tijani, I.A., Wu, Y.F. and Lim, C.W. (2020a), "Effects of pre-damage on stress-strain relationship of partially confined concrete", ACI Struct. J., 118(1), 61-72. https://doi.org/10.14359/51728089.   DOI
40 Tijani, I.A., Wu, Y.F. and Lim, C.W. (2020b), "Energy balance method for modeling ultimate strain of fiber-reinforced polymer-repaired concrete", Struct. Concrete, 21(2), 804-820. https://doi.org/10.1002/suco.201900260.   DOI
41 Wang, L.M. (2017), "Effect of corner radius on the performance of CFRP-confined square concrete columns", City University of Hong Kong.
42 Wang, L.M. and Wu, Y.F. (2008), "Effect of corner radius on the performance of CFRP-confined square concrete columns: Test", Eng. Struct., 30(2), 493-505. https://doi.org/10.1016/j.engstruct.2007.04.016.   DOI
43 Tijani, I.A., Jiang, C., Lim, C.W. and Wu, Y.F. (2020), "Effect of load eccentricity on the mechanical response of FRP-confined predamaged concrete under compression", J. Compos. Constr., 24(5), 04020057. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001071.   DOI
44 Wang, Y.F. and Wu, H.L. (2011), "Size effect of concrete short columns confined with aramid FRP jackets", J. Compos. Constr., 15(4), 535-544. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000178.   DOI
45 Shehata, I.A.E.M., Carneiro, L.A.V. and Shehata, L.C.D. (2002), "Strength of short concrete columns confined with CFRP sheets", Mater. Struct., 35(1), 50-58. https://doi.org/10.1007/BF02482090.   DOI
46 Tao, Z., Yu, Q. and Zhong, Y.Z. (2008), "Compressive behaviour of CFRP-confined rectangular concrete columns", Mag. Concrete Res., 60(10), 735-745. https://doi.org/10.1680/macr.2007.00115.   DOI
47 Tijani, I.A., Jiang C., Lim, C.W. and Wu, Y.F. (2022), "Eccentrically loaded concrete under nonuniform passive confinement", J. Struct. Eng., 148(1), 04021247. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003208.   DOI
48 Tijani, I.A., Wu, Y.F. and Lim, C.W. (2019), "Aggregate size effects and general static loading response on mechanical behavior of passively confined concrete", Constr. Build. Mater., 205, 61-72. https://doi.org/10.1016/j.conbuildmat.2019.01.164.   DOI
49 Wang, Y.F. and Wu, H.L. (2010), "Experimental investigation on square high-strength concrete short columns confined with AFRP sheets", J. Compos. Constr., 14(3), 346-351. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000090.   DOI
50 Wang, Z., Wang, D. and Smith, S.T. (2012), "Size effect of square concrete columns confined with CFRP wraps", APFIS 2012- 3rd Asia-Pacific Conference on FRP in Structures, February.
51 Mohammadi, M. and Wu, Y.F. (2017), "Triaxial test for concrete under non-uniform passive confinement", Constr. Build. Mater., 138, 455-468. https://doi.org/10.1016/j.conbuildmat.2017.02.032.   DOI
52 Wei, Y.Y. and Wu, Y.F. (2012), "Unified stress-strain model of concrete for FRP-confined columns", Constr. Build. Mater., 26(1), 381-392. https://doi.org/10.1016/j.conbuildmat.2011.06.037.   DOI
53 Williams, C.K. (1998), "Prediction with Gaussian processes: From linear regression to linear prediction and beyond", Learning in Graphical Models, Springer, Dordrecht.
54 Wu, Y.F. and Cao, Y.G. (2017), "Energy balance method for modeling ultimate strain of confined concrete", ACI Struct. J., 114(2), 373-381. https://doi.org/10.14359/51689429.   DOI
55 Nistico, N., Pallini, F., Rousakis, T.C., Wu, Y.F. and Karabinis, A.I. (2014), "Peak strength and ultimate strain prediction for FRP confined square and circular concrete sections", Compos. Part B: Eng., 67, 543-554. https://doi.org/10.1016/j.compositesb.2014.07.026.   DOI
56 Pessiki, S., Harries, K.A., Kestner, J.T., Sause, R. and Ricles, J.M. (2001), "Axial behavior of reinforced concrete columns confined with FRP jackets", J. Compos. Constr., 5(4), 237-245. https://doi.org/10.1061/(ASCE)1090-0268(2001)5:4(237).   DOI
57 Rochette, P. and Labossiere, P. (2000), "Axial testing of rectangular column models confined with composites", J. Compos. Constr., 4(3), 129-136. https://doi.org/10.1061/(ASCE)1090-0268(2000)4:3(129).   DOI
58 Rousakis, T.C., Karabinis, A.I. and Kiousis, P.D. (2007), "FRP-confined concrete members: Axial compression experiments and plasticity modelling", Eng. Struct., 29(7), 1343-1353. https://doi.org/10.1016/j.engstruct.2006.08.006.   DOI
59 Sadowski, L., Piechowka-Mielnik, M., Widziszowski, T., Gardynik, A. and Mackiewicz, S. (2019), "Hybrid ultrasonic-neural prediction of the compressive strength of environmentally friendly concrete screeds with high volume of waste quartz mineral dust", J. Clean. Prod., 212, 727-740. https://doi.org/10.1016/j.jclepro.2018.12.059.   DOI
60 Rousakis, T.C. and Karabinis, A.I. (2008), "Substandard reinforced concrete members subjected to compression: FRP confining effects", Mater. Struct., 41(9), 1595-1611. https://doi.org/10.1617/s11527-008-9351-4.   DOI
61 Wu, Y.F. and Jiang, C. (2013), "Effect of load eccentricity on the stress-strain relationship of FRP-confined concrete columns", Compos. Struct., 98, 228-241. https://doi.org/10.1016/j.compstruct.2012.11.023.   DOI
62 Wu, Y.F. and Jiang, J.F. (2013). "Effective strain of FRP for confined circular concrete columns", Compos. Struct., 95, 479-491. https://doi.org/10.1016/j.compstruct.2012.08.021.   DOI
63 Wu, Y.F. and Wei, Y.Y. (2010), "Effect of cross-sectional aspect ratio on the strength of CFRP-confined rectangular concrete columns", Eng. Struct., 32(1), 32-45. https://doi.org/10.1016/j.engstruct.2009.08.012.   DOI
64 Wu, Y.F., Yun, Y., Wei, Y.Y. and Zhou, Y.W. (2014), "Effect of predamage on the stress-strain relationship of confined concrete under monotonic loading", J. Struct. Eng., 140(12), 04014093. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001015.   DOI
65 Youcef, Y.S., Amziane, S. and Chemrouk, M. (2010), "Geometrical effect on the behavior of CFRP confined and unconfined concrete columns", J. Reinf. Plast. Compos., 29(17), 2621-2635. https://doi.org/10.1177/0731684409357255.   DOI
66 Zhang, D.J., Wang, Y.F. and Ma, Y.S. (2010), "Compressive behaviour of FRP-confined square concrete columns after creep", Eng. Struct., 32(8), 1957-1963. https://doi.org/10.1016/j.engstruct.2010.02.023.   DOI