• Title/Summary/Keyword: Network by/for AI

Search Result 389, Processing Time 0.027 seconds

Examination of Required Functions in the PBNM Scheme for Multiple Domains as Cyber Physical System that Utilizes Data Science and AI

  • Kazuya Odagiri;Shogo Shimizu;Naohiro Ishii
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.2
    • /
    • pp.31-38
    • /
    • 2023
  • In the current Internet system, there are many problems using anonymity of the network communication such as personal information leaks and crimes using the Internet system. This is why TCP/IP protocol used in Internet system does not have the user identification information on the communication data, and it is difficult to supervise the user performing the above acts immediately. As a study for solving the above problem, there is the study of Policy Based Network Management (PBNM). This is the scheme for managing a whole Local Area Network (LAN) through communication control for every user. In this PBNM, two types of schemes exist. As one scheme, we have studied theoretically about the Destination Addressing Control System (DACS) Scheme with affinity with existing internet. By applying this DACS Scheme to Internet system management, we will realize the policy-based Internet system management. In this paper, required functions in the PBNM Scheme for multiple domains as cyber physical system that utilizes data science and AI is examined.

Study on Prediction of Similar Typhoons through Neural Network Optimization (뉴럴 네트워크의 최적화에 따른 유사태풍 예측에 관한 연구)

  • Kim, Yeon-Joong;Kim, Tae-Woo;Yoon, Jong-Sung;Kim, In-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.427-434
    • /
    • 2019
  • Artificial intelligence (AI)-aided research currently enjoys active use in a wide array of fields thanks to the rapid development of computing capability and the use of Big Data. Until now, forecasting methods were primarily based on physics models and statistical studies. Today, AI is utilized in disaster prevention forecasts by studying the relationships between physical factors and their characteristics. Current studies also involve combining AI and physics models to supplement the strengths and weaknesses of each aspect. However, prior to these studies, an optimization algorithm for the AI model should be developed and its applicability should be studied. This study aimed to improve the forecast performance by constructing a model for neural network optimization. An artificial neural network (ANN) followed the ever-changing path of a typhoon to produce similar typhoon predictions, while the optimization achieved by the neural network algorithm was examined by evaluating the activation function, hidden layer composition, and dropouts. A learning and test dataset was constructed from the available digital data of one typhoon that affected Korea throughout the record period (1951-2018). As a result of neural network optimization, assessments showed a higher degree of forecast accuracy.

A Comparison of Structural Position and Exploitative Innovation Based on a Patent Citation Network of the Top 100 Digital Companies

  • Hyun Mo Kang;Il Young Choi;Jae Kyeong Kim;Hyun Joo Shin
    • Asia pacific journal of information systems
    • /
    • v.31 no.3
    • /
    • pp.358-377
    • /
    • 2021
  • Knowledge drives business innovation. However, even if companies have the same knowledge element in the business ecosystem, innovation performance varies depending on the structural position of the technical knowledge network. This study investigated whether there is a difference in exploitative innovation according to the structural position of the AI technical knowledge network. We collected patents from the top 100 digital companies registered with the US Patent Office from 2015 to 2019 and classified the companies into knowledge producer-based brokers, knowledge absorber-based brokers, knowledge absorbers, and knowledge producers from the perspective of knowledge creation and flow. The analysis results are as follows. First, a few of the top 100 digital companies disseminate, absorb, and mediate knowledge, while the majority do not. Second, exploitative innovation is the largest, in the order of knowledge producer, knowledge absorber-based broker, knowledge absorber, and knowledge producer-based broker. Finally, patents for industrial intelligence occupy a large proportion, and knowledge producers are leading exploitative innovation. Therefore, latecomers need to expand their resources and capabilities by citing patents owned by leading companies and converge with existing industries into AI-based industries.

Maximum Torque Control of IPMSM Drive with LM-FNN Controller (LM-FNN 제어기에 의한 IPMSM 드라이브의 최대토크 제어)

  • Nam, Su-Myeong;Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.566-569
    • /
    • 2005
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. The paper is proposed maximum torque control of IPMSM drive using artificial intelligent(AI) controller. The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using AI controller. This paper is proposed speed control of IPMSM using learning mechanism fuzzy neural network(LM-FNN) and estimation of speed using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled LM-FNN and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also. this paper is proposed the experimental results to verify the effectiveness of AI controller.

  • PDF

Maximum Torque Control of IPMSM Drive with ALM-FNN Controller (ALM-FNN 제어기에 의한 IPMSM 드라이브의 최대토크 제어)

  • Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.3
    • /
    • pp.110-114
    • /
    • 2006
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. In this paper maximum torque control of IPMSM drive using artificial intelligent(AI) controller is proposed. The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using AI controller. This paper is proposed speed control of IPMSM using adaptive learning mechanism fuzzy neural network(ALM-FNN) and estimation of speed using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled ALM-FNN and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the experimental results to verify the effectiveness of AI controller.

OPTIMISATION OF ASSET MANAGEMENT METHODOLOGY FOR A SMALL BRIDGE NETWORK

  • Jaeho Lee;Kamalarasa Sanmugarasa
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.597-602
    • /
    • 2011
  • A robust asset management methodology is essential for effective decision-making of maintenance, repair and rehabilitation of a bridge network. It can be achieved by a computer-based bridge management system (BMS). Successful BMS development requires a reliable bridge deterioration model, which is the most crucial component in a BMS, and an optimal management philosophy. The maintenance optimization methodology proposed in this paper is developed for a small bridge network with limited structural condition rating records. . The methodology is organized in three major components: (1) bridge health index (BHI); (2) maintenance and budget optimization; and (3) reliable Artificial Intelligence (AI) based bridge deterioration model. The outcomes of the paper will help to identify BMS implementation problems and to provide appropriate solutions for managing small bridge networks.

  • PDF

Development of Game Graphics and AI Picture Classification Model for Real-Life Images on CNN (CNN 기반의 실사 이미지에 대한 게임 그래픽과 AI 그림 분류 모델 개발)

  • Seung-Bo Park;Dong-Hwi Cho;Seo-Young Choi;Eun-Ji Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.465-466
    • /
    • 2023
  • AI 기술의 발전으로 AI가 그린 그림과 인간이 직접 그린 그림을 식별하는 것이 어려워졌다. AI 기술을 통해 작품을 특정 화풍으로 그리는 것이 쉬워져 작품 도용과 평가 절하가 증가하고 있으며, AI가 인간과 유사하게 그림을 표현하는 경우 딥페이크 피싱과 같은 악용 사례도 늘어나고 있다. 따라서 본 논문에서는 AI 그림을 식별하기 위한 인공지능 모델 개발을 목표로 하고 있으며, 데이터셋을 구축하여 인공지능 기술을 활용한 알고리즘을 개발한다. YOLO Segmentation과 CNN을 활용하여 학습을 진행하고, 이를 통해 도용과 딥페이크 피해를 방지하는 프로세스를 제안한다.

  • PDF

Deep Learning-Based, Real-Time, False-Pick Filter for an Onsite Earthquake Early Warning (EEW) System (온사이트 지진조기경보를 위한 딥러닝 기반 실시간 오탐지 제거)

  • Seo, JeongBeom;Lee, JinKoo;Lee, Woodong;Lee, SeokTae;Lee, HoJun;Jeon, Inchan;Park, NamRyoul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.71-81
    • /
    • 2021
  • This paper presents a real-time, false-pick filter based on deep learning to reduce false alarms of an onsite Earthquake Early Warning (EEW) system. Most onsite EEW systems use P-wave to predict S-wave. Therefore, it is essential to properly distinguish P-waves from noises or other seismic phases to avoid false alarms. To reduce false-picks causing false alarms, this study made the EEWNet Part 1 'False-Pick Filter' model based on Convolutional Neural Network (CNN). Specifically, it modified the Pick_FP (Lomax et al.) to generate input data such as the amplitude, velocity, and displacement of three components from 2 seconds ahead and 2 seconds after the P-wave arrival following one-second time steps. This model extracts log-mel power spectrum features from this input data, then classifies P-waves and others using these features. The dataset consisted of 3,189,583 samples: 81,394 samples from event data (727 events in the Korean Peninsula, 103 teleseismic events, and 1,734 events in Taiwan) and 3,108,189 samples from continuous data (recorded by seismic stations in South Korea for 27 months from 2018 to 2020). This model was trained with 1,826,357 samples through balancing, then tested on continuous data samples of the year 2019, filtering more than 99% of strong false-picks that could trigger false alarms. This model was developed as a module for USGS Earthworm and is written in C language to operate with minimal computing resources.

2023 Survey on User Experience of Artificial Intelligence Software in Radiology by the Korean Society of Radiology

  • Eui Jin Hwang;Ji Eun Park;Kyoung Doo Song;Dong Hyun Yang;Kyung Won Kim;June-Goo Lee;Jung Hyun Yoon;Kyunghwa Han;Dong Hyun Kim;Hwiyoung Kim;Chang Min Park;Radiology Imaging Network of Korea for Clinical Research (RINK-CR)
    • Korean Journal of Radiology
    • /
    • v.25 no.7
    • /
    • pp.613-622
    • /
    • 2024
  • Objective: In Korea, radiology has been positioned towards the early adoption of artificial intelligence-based software as medical devices (AI-SaMDs); however, little is known about the current usage, implementation, and future needs of AI-SaMDs. We surveyed the current trends and expectations for AI-SaMDs among members of the Korean Society of Radiology (KSR). Materials and Methods: An anonymous and voluntary online survey was open to all KSR members between April 17 and May 15, 2023. The survey was focused on the experiences of using AI-SaMDs, patterns of usage, levels of satisfaction, and expectations regarding the use of AI-SaMDs, including the roles of the industry, government, and KSR regarding the clinical use of AI-SaMDs. Results: Among the 370 respondents (response rate: 7.7% [370/4792]; 340 board-certified radiologists; 210 from academic institutions), 60.3% (223/370) had experience using AI-SaMDs. The two most common use-case of AI-SaMDs among the respondents were lesion detection (82.1%, 183/223), lesion diagnosis/classification (55.2%, 123/223), with the target imaging modalities being plain radiography (62.3%, 139/223), CT (42.6%, 95/223), mammography (29.1%, 65/223), and MRI (28.7%, 64/223). Most users were satisfied with AI-SaMDs (67.6% [115/170, for improvement of patient management] to 85.1% [189/222, for performance]). Regarding the expansion of clinical applications, most respondents expressed a preference for AI-SaMDs to assist in detection/diagnosis (77.0%, 285/370) and to perform automated measurement/quantification (63.5%, 235/370). Most respondents indicated that future development of AI-SaMDs should focus on improving practice efficiency (81.9%, 303/370) and quality (71.4%, 264/370). Overall, 91.9% of the respondents (340/370) agreed that there is a need for education or guidelines driven by the KSR regarding the use of AI-SaMDs. Conclusion: The penetration rate of AI-SaMDs in clinical practice and the corresponding satisfaction levels were high among members of the KSR. Most AI-SaMDs have been used for lesion detection, diagnosis, and classification. Most respondents requested KSR-driven education or guidelines on the use of AI-SaMDs.

Automated optimization for memory-efficient high-performance deep neural network accelerators

  • Kim, HyunMi;Lyuh, Chun-Gi;Kwon, Youngsu
    • ETRI Journal
    • /
    • v.42 no.4
    • /
    • pp.505-517
    • /
    • 2020
  • The increasing size and complexity of deep neural networks (DNNs) necessitate the development of efficient high-performance accelerators. An efficient memory structure and operating scheme provide an intuitive solution for high-performance accelerators along with dataflow control. Furthermore, the processing of various neural networks (NNs) requires a flexible memory architecture, programmable control scheme, and automated optimizations. We first propose an efficient architecture with flexibility while operating at a high frequency despite the large memory and PE-array sizes. We then improve the efficiency and usability of our architecture by automating the optimization algorithm. The experimental results show that the architecture increases the data reuse; a diagonal write path improves the performance by 1.44× on average across a wide range of NNs. The automated optimizations significantly enhance the performance from 3.8× to 14.79× and further provide usability. Therefore, automating the optimization as well as designing an efficient architecture is critical to realizing high-performance DNN accelerators.