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ABSTRACT: A robust asset management methodology is essential for effective decision-making of maintenance, 
repair and rehabilitation of a bridge network. It can be achieved by a computer-based bridge management system (BMS). 
Successful BMS development requires a reliable bridge deterioration model, which is the most crucial component in a 
BMS, and an optimal management philosophy. The maintenance optimization methodology proposed in this paper is 
developed for a small bridge network with limited structural condition rating records. . The methodology is organized in 
three major components: (1) bridge health index (BHI); (2) maintenance and budget optimization; and (3) reliable 
Artificial Intelligence (AI) based bridge deterioration model. The outcomes of the paper will help to identify BMS 
implementation problems and to provide appropriate solutions for managing small bridge networks. 
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1. INTRODUCTION 

The efficient use of maintenance funds for managing 
bridge networks requires an effective bridge asset 
management technology and its application. A Bridge 
Management System (BMS) helps determine the 
complexity of decision-making for proper bridge 
maintenance, repair and rehabilitation (MR&R) strategies 
within the allocated funds. The first commercial version 
of BMS software was developed in the early 1990s and 
has become a common tool for effective bridge 
management to the extended life cycle of bridge networks. 
With or without BMS software, bridge MR&R must be 
performed by any bridge authority at the right time, 
because most infrastructure facilities were planned, 
designed, constructed, operated and modified or 
rehabilitated under uncertain and risky conditions [1]. 

Most bridge agencies have begun the transition to 
BMS-based thinking through performance-based 
management and strategic planning for their local and 
state bridge management. However, inconsistencies 
between BMS inputs and bridge agencies’ existing 
datasets are an obstacle to implementing and operating 
BMS software. A large number of bridge datasets for a 
BMS database are an essential requirement for analyzing 
a bridge network. Among many BMS input requirements, 
historical bridge datasets such as bridge element 
condition ratings and maintenance records from periodic 
bridge inspection results, are crucial for evaluating up-to-
date bridge performance prioritisation for a superlative 
MR&R decision. However, there are causes of fallibility 
in the use of BMS software from the perspective of 

bridge agencies. These are: (1) Commercial BMS 
software has been used for less than 15 years and even 
those bridge agencies which implemented BMSs from an 
early stage, have only approximately 6 to 7 inspection 
records at their disposal; (2) Bridge condition ratings 
normally do not change much over short time periods; (3) 
Approximately 60% of BMS analytical processes rely 
heavily on periodic bridge inspection results [2]. 

Numerous bridge condition rating and deterioration 
models have been developed to reliably determine the 
bridge life cycle for the remaining years of use for 
establishing MR&R strategies. Despite many previous 
research achievements, such fundamental problems as the 
inadequate number of bridge inspection records for BMS 
input requirements for estimating future bridge 
performance still remains an issue to be overcome. Many 
researchers and infrastructure asset management 
practitioners also have recognized that deterioration of 
infrastructure facilities is not deterministic [3]. Thus, 
current BMS technologies are still not practically reliable. 

For effective implementation of BMS software, two 
important research problems must be solved: (1) Among 
BMS data requirements, the amount of time-dependent 
bridge data from periodic bridge inspections for a BMS 
update is very limited; (2) Bridge condition rating 
variances in the existing small number of historical data 
cause inaccurate prediction results from the most 
important BMS analysis modules, i.e. deterioration model, 
that require lengthy historical data patterns for their future 
projections. 

This paper presents the bridge asset management 
methodology for a small bridge network. Key 
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components of the proposed methodology includes: (1) 
bridge health index for calculating overall condition 
rating of bridge elements and a bridge; (2) maintenance 
optimization for the element/project/network level 
analysis; and (3) AI-based bridge deterioration model for 
reliable prediction of future bridge performance. The 
deterioration model described in this paper is based on the 
Backward Prediction Model (BPM) to address the issue 
of lacking historical condition ratings for BMSs. 

2. BRIDGE HEALTH INDEX 

Bridge agencies handle enormous amounts of bridge 
related data. Even with the best of modelling and 
computer programmes the outcomes must be clearly 
communicated to funding agencies and top level decision 
makers in a simple and easy to understand manner. 
California Department of Transportation adopted the 
Bridge Health Index (BHI) to bridge the communication 
gap between the various stakeholders [4] 

BHI will enable the decision makers to easily 
comprehend and compare the condition of various bridges 
in the network. BHI will be expressed as a number 1 to 
100. BHI of 100 will represent a new bridge and a BHI of 
1 will represent the worst condition state. Bridge agencies 
will calculate the BHI by assigning asset values to the 
various bridge elements. The current asset value (CAV) 
of an element will depend on its condition state. As the 
condition state deteriorates the asset values declines. 
Table below shows the declining value of the element as 
a fraction of its ‘new asset’ value (NAV) for the various 
condition states CS1 to CS4. 

 
Table 1. Declining Asset Value Factor 

 

Condition State CS1 CS2 CS3 CS4 

CAV/NAV 
(Declining Asset 
Value Factor) 

1 0.8 0.5 0 

 
The current asset value (CAV) of every element of the 

bridge will be calculated and aggregated to find the 
current asset value of the bridge. The ratio between the 
current asset value of a bridge and the asset value of a 
new bridge, expressed as a percentage, will be the Health 
Index of that particular bridge. That is,  

 
BHI=(Σ CAV)/(Σ NAV)*100 

 
Similarly this can be extended to the entire bridges in 

the network and an aggregated Health Index can be 
derived for the network. This will be expressed as the 
Network Health Index (NHI) 

3. NETWORK HEALTH INDEX AND 
BUDGETING 

Bridge agencies and funding agencies should come to 
an agreement as to what will be an acceptable NHI for 
their network. This will depend on the condition of the 

bridge stock, repair costs and the availability of funds. A 
BMS costing module will be a critical tool that will 
enable informed decision making in this regard. 

 
Figure 1. Budget Vs Network Health Index (NHI) 

 
The budget requirements to achieve desired NHI will 

generate a plot as shown in Figure 1 above. This gives a 
snapshot of the task in hand and the funding requirements 
to achieve desired outcomes. For example the agency 
could set a target to achieve a certain minimum NHI by a 
certain year and the asset managers could then plan and 
implement a program to achieve these policy objectives. 

4. MAINTENANCE OPTIMISATION 

Bridge structures that pose a safety risk must be 
repaired without delay. Bridge elements that are in a 
critical condition state must also be repaired as a priority. 
Critical condition state will be determined by the bridge 
agency. 

The complexities involved in the assessment of bridges 
in a large network poses significant challenges to decision 
makers with regards to planning and budgeting for repair 
and maintenance works programmes. The prioritization of 
repair works will be governed by a number of factors. 
The critical factors that influence maintenance 
prioritization include: 

 Current health of bridge element 
 Importance of the element within a bridge 

structure 
 Road hierarchy 
 Size of the bridge (asset value), and 
 Value for money 

 
These critical influencing factors are represented by an 

Element Health Number (EHN), Element Significance 
Number (ESN), Socio-Economic Significance Number 
(SSN) and Value for Money Number (VMN) as described 
in sections 4.1-4.4. 
4.1 Element Health Number 

This represents the current health of a bridge element 
determined by Element Health Index (EHI) as described 
in section 2 and using the declining asset value factors in 
Table 1. 

EHI= CAV/NAV*100 
 

Table 2 below assigns EHN values of 2-10 depending 
on the Element Health Index. A higher EHN is associated 
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with an element that is in good health. 
 

Table 2. Element Health Number (EHN) 
EHI EHN 

> 90 10 

> 80 9 

> 70 8 

> 60 7 

> 50 6 

> 40 5 

> 30 4 

> 20 3 

< 20 2 

 
4.2 Element Significance Number  

This represents the importance of a particular element 
within the bridge structure. A defective main girder, 
being a critical member of the structure, will require more 
urgent attention than the bridge barriers or kerbs. The 
various elements of the bridge and their importance 
ratings are listed in Table 3 below. The lower numbers 
are associated with increased importance, as lower the 
MPN the higher the maintenance priority. 

 
Table 3. Element Significance Number (ESN) 

 

Element 
Element 
Significance 
Number 

Main Girders, Transverse Beams, Piers, 
Headstocks, Corbels 

5 

Decks, Bearings, Bracings, Diaphragms 6 

Abutments, Foundations 7 

Bridge Approach, Wing walls 8 

Bridge barriers, Kerbs, Guard rails, 
Wearing surface, Deck joints 

9 

Footway, Drainage outlets 10 

 
4.3 Socio-Economic Significance Number 

This represents the social and economic impacts of a 
bridge and is determined by road hierarchy and size of the 
bridge in terms of asset value (Table 4). Maintenance of a 
large bridge is critical to preserving the large investment, 
and closing of a bridge on a highway will have a major 
social impact. As such the lower numbers in Table 4 are 
associated with large bridges on major roads. 

 
Table 4. Socio-Economic Significance Number (SSN) 

 

Asset 
Value 

Road Hierarchy 
Highway, 
Dual 
Carriageway 

2-Lane 
Urban 
Roads 

2-Lane 
Rural 
Roads 

Local 
Access 
Roads 

>10M 5 5 6 7 
5M-10M 5 6 7 8 
1M-5M 6 7 8 9 

 
4.4 Value for Money Number 

This represents the economics of early intervention and 
the probability of a worsening condition when 
maintenance is delayed. If the repair cost of an element in 
its current state is significantly cheaper compared to the 
next deteriorated condition state and that it is very likely 
that this deterioration will occur in the near future, then 
early intervention will result in significant savings and 
hence lower the life cycle cost of the network. The lower 
numbers assigned in Table 5 below correspond to higher 
priority in this context. 

 
Table 5. Value for Money Number (VMN) 

 
% Increase 
in Repair 
Cost 

Probability of change in Condition 
State within 2-years 
>80 >60 >40 >20 <20 

>100 2 3 4 5 6 

75-100 3 4 5 6 7 

50-75 4 5 6 7 8 

25-50 5 6 7 8 9 

<25 6 7 8 9 10 
 

4.5 Maintenance Priority Number (MPN) 
The maintenance priority number (MPN) integrates all 

of the abovementioned critical factors that will influence 
decision making. MPN is calculated as follows: 

 
MPN= EHN * ESN* SSN* VMN / 100 

 
MPN range is 1-100. The priority for repair increase as 

the number reduces. This is an easy to comprehend tool 
that will facilitate bridge/funding agencies to make 
consistent decisions and set policy objectives backed up 
by strong rationale. 

 
4.6 Maintenance Programme 

Bridge repair and maintenance programme will be 
influenced by the condition of bridges (MPN) and 
funding constraints. Repair cost to fix bridges that are 
below a certain MPN can be calculated and plotted as 
shown in Figure 2 below. Availability of budget will then 
set the MPN that will trigger repair works. 

 
Figure 2. Repair Cost vs Maintenance Priority Number 
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This process can be repeated after remodeling 
deterioration for future years. This will then enable bridge 
authority to determine the MPN ‘cut-off’ for respective 
years and in turn identify the bridges that are picked up 
for repair. Table 6 below, shows a typical bridge repair 
programme. Alternatively if bridge authority decides to 
set a target MPN for a particular year, then the budget 
requirements can be reported. 

 
Table 6. Value for Money Number (VMN) 

 

Bridge ID 
Programmed Year of Repair 

2012 2014 2016 2018 2020 

BRDxx1  X    

BRDxx2   X   

BRDxx3 X     

BRDxx4    X  

 
Bridge agencies typically adopt a 5-10 year forward 

planning framework. Once the budget requirements are 
confirmed for the maintenance programme, the 
corresponding network work health index (NHI) can be 
predicted over the 5-10 year period. Table 7 below shows   
the budget and corresponding NHI for a 10-year 
programme. 

 
Table 7. Maintenance Programme & NHI 

 
Year 2012 2014 2016 2018 2020 
Budget $X1 $X2 $X3 $X4 $X5 
Predicted
NHI 

NHI1 NHI2 NHI3 NHI4 NHI5 

5. BRIDGE DETERIORATION MODEL 

The outcomes of bridge deterioration model are used to 
analyse maintenance priority and budget planning. This 
section presents an AI-based bridge deterioration model 
to reduce uncertainty in typical long-term predictions 
caused by insufficient historical condition ratings. A 
typical approach of deterioration modelling and an outline 
of the present study are conceptually described in Figures 
3 (a) and (b), respectively. Both long-term predictions 
(years from tf1 to tfn) shown in Figure 3 (a) and (b) are 
based on limited condition rating records only (available 
from years tp to tpn).  

Figure 3(a) shows a typical deterioration modelling 
where the long-term prediction of bridge performance is 
represented by the overall condition rating (OCR). The 
OCR can not represent individual bridge elements’ 
condition status and is unable to represent detailed 
condition ratings for a small quantity of bridge elements 
in lower Condition States (i.e. 3 and 4 CSs). This is a key 
drawback because bridge collapse usually occurs due to 
failure of a single element. As a result, all bridge 
elements need to be analysed at element level in order to 
reduce such catastrophic risk.  
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Figure 3. Conceptual diagram for the Long-term bridge 
performance models: (a) Typical deterioration modeling; 

(b)AI-based Bridge deterioration model 
 
The recent study by Lee et al [5] and Son et al [6], 

shown in Figure 3 (b), illustrates that the abovementioned 
limitations of the current deterioration modelling can be 
minimised. This study has two major components: (1) 
generating unavailable historical condition ratings (years 
from t1 to tp-1) by using the BPM methodology. It is to 
establish a comprehensive bridge condition ratings (years 
from t0 to tpn) which contains more historical deterioration 
patterns than the shear amount of available condition 
ratings (from tp to tpn); (2) the outcomes from (1) are to 
predict long-term performance of individual bridge 
elements using time-series neural network technique.  

In order to minimise the problem of insufficient 
historical condition ratings for a BMS, Backward 
Prediction Model (BPM) have been established by Lee et 
al [5]. Figure 4 schematically describes the mechanism of 
the BPM. It illustrates the main function of the Artificial 
Neural Networks (ANNs) in establishing the correlation 
between the existing condition rating datasets (years from 
year tp to tpn) and the corresponding years’ non-bridge 
factors such as traffic volume, population growth and 
climatic conditions. The selection of non-bridge factors is 
important because all bridge elements are always exposed 
to local environment conditions and traffic loadings. The 
non-bridge factors directly and indirectly affect the 
variation of the bridge conditions thereby the 
deterioration rate. The relationships established using 
neural networks are then applied to the non-bridge factors 
(years from t1 to tp-1) to generate the unavailable bridge 
condition ratings (from years t1 to tp-1). Thus, the non-
bridge factors in conjunction with the ANN technique can 
produce the historical trends that inform the current 
condition ratings. The input layer in neural network may 
have such variables as the number of vehicles, climatic 
conditions and more. This information is used to train the 
ANN to determine the correlation with currently available 
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bridge condition rating data. The BPM has been tested 
using two different types of bridge condition rating 
datasets - the National Bridge Inventory (NBI) and BMS 
condition rating inputs - for the same bridges provided by 
the Maryland Department of Transport (DoT), USA. 

 

 
 

Figure 4. Mechanism of the BPM  
 
The other feasibility study for the AI-based 

deterioration model is conducted by using the BPM 
methodology in conjunction with the Time-Delay Neural 
Networks (TDNNs) technique. A timeframe of 
input/output and two-stage procedure for the model and is 
presented in Figures 5 and 6, respectively.  

 

 
 

Figure 5. Timeframe of the AI-based bridge 
deterioration model 

 
In Stage 1, the BPM methodology [5] is used to 

generate historical condition ratings. The actual element-
level bridge inspection records (years from tp to tpn) are 
correlated with relevant non-bridge factors, such as traffic 
volume and climatic condition, in the neural network 
training session to generate missing historical condition 

ratings (years from t1 to tp-1) in the testing session. The 
generated condition ratings for each year contain 66 cases 
which are the combined number of learning rates (lr: 0.0-
0.5) and momentum coefficients (mc: 0.0-1.0) in the 
neural network configurations. The number 66 also 
represents the total quantity of a given bridge element.  

In order to confirm the outcome, the BPM need to train 
the generated condition rating together with non-bridge 
factors from same years t1 to tp-1 for the prediction of 
present years condition rating (years from tp to tpn) in the 
neural network testing stage. This process is to validate 
the generated condition ratings (years from tp to tpn) by 
simply comparing with actual condition ratings (years 
from tp to tpn). 

 

 
Figure 6. Timeframe of the AI-based bridge 

deterioration model 
 
In Stage 2, the BPM results (from years t1 to tp-1) 

obtained from Stage 1 together with actual condition 
rating (years from tp to tpn).are used as TDNN inputs 
(years from t1 to tpn) to estimate long-term bridge element 
performances. It is noted that the feasibility study was 
only considered “Do-nothing” – no maintenance effects 
in long-term prediction. This input data is converted to 
time sequences for time series prediction in the TDNN. 
The proposed TDNN provides only one-step ahead 
prediction at a time (one cycle), i.e. a 2-year interval in 
the actual time domain. The result of the first one-step-
ahead prediction (at year tf1) is added on the original 
TDNN input (from years t1 to tpn). This means that the 
amount of input for TDNN increases for the second cycle 
of the one-step-ahead prediction (at year tf2) to obtain a 
complete long-term prediction: iterations of the above-
described process are required until failure condition 
rating of element is computed at year tfn. The number of 
yearly prediction by TDNN is also 66, which is in an 
identical form as the BPM outcomes obtained in Stage 1. 
The cross-validation is also necessary to measure the 
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prediction accuracy of TDNN outcomes. In the present 
study, the results of TDNN predictions (from years tp to 
tpn) using BPM outcome only (from years t1 to tp-1) are 
compared with the actual BMS condition ratings (from 
years tp to tpn). All TDNN outcomes are considered 
satisfactory if the comparisons are within the error 
allowances. The maximum yearly prediction errors of 
three different condition state scales in 3, 4 and 5 CSs are 
±16.67%, ±12.50% and ±10% respectively. It should be 
noted that the final outcomes of the TDNN, upon 
calibration, are in the same form as the bridge element-
level inspection.  

8. CONCLUDING REMARKS 

A framework for developing a Health Index for 
Bridges (BHI) and the network as a whole (NHI) is 
presented. BHI will enable the decision makers to easily 
comprehend and compare the condition of various bridges 
in the network. BHI is expressed as a number 1 to 100. 
BHI of 100 represents a new bridge and a BHI of 1 
represents the worst condition state of a bridge. The 
complexities involved in the assessment of bridges in a 
large network poses significant challenges to decision 
makers with regards to planning and budgeting for repair 
and maintenance works programmes. 

The prioritization of repair works is governed by a 
number of factors. The critical factors that influence 
maintenance prioritisation were identified as current 
health of bridge element, importance of the element 
within a bridge structure, road hierarchy, size of the 
bridge (asset value), and value for money spent on repair. 
These critical influencing factors are represented by an 
Element Health Number (EHN), Element Significance 
Number (ESN), Socio-Economic Significance Number 
(SSN) and Value for Money Number (VMN). The 
methodology for quantifying these critical factors is 
presented. 

The maintenance priority number (MPN) integrates all 
of the abovementioned critical factors that influence 
decision making. MPN is calculated as follows: MPN= 
EHN * ESN* SSN* VMN / 100. MPN range is 1-100. 
The priority for repair increases as the MPN number 
decreases. This is an easy to comprehend tool that will 
facilitate bridge/funding agencies to make consistent 
decisions and set policy objectives backed up by strong 
rationale.  Bridge repair and maintenance programme is 
influenced by the maintenance priority number (MPN) 
and funding constraints. Availability of budget sets the 
MPN that triggers repair works. This process can be 
repeated after remodelling deterioration for future years. 
This will then enable the bridge authority to determine the 
MPN ‘cut-off’ for respective years and in turn identify the 
bridges that are picked up for repair. Alternatively if the 
bridge authority decides to set a target MPN for a 
particular year, then the budget requirements can be 
reported. 

The reliability of prioritization depends on the 
outcomes of long-term structural condition ratings from 
the deterioration model. The limitation in the current 
deterioration modelling techniques is the lack of usable 

bridge element’s historical condition rating records. 
Based heavily on a few sets of recent structural condition 
ratings, current modelling techniques cannot be expected 
to produce practically useful outcomes. This in turn leads 
to an unreliable prediction of future bridge condition 
ratings. In order to mitigate this drawback, the introduced 
AI techniques, BPM and TDNN, have been developed to 
help improve the reliability of the deterioration model for 
long-term prediction of bridge element performance. 
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