
ETRI Journal. 2020;42(4):505–517.	﻿	   |  505wileyonlinelibrary.com/journal/etrij

1  |   INTRODUCTION

Deep neural networks (DNNs) have recently become the
most influential technology for diverse artificial-intelli-
gence (AI) applications [1]. The scope of AI applications
that use DNNs has been extended to speech recognition
[2], complex computer games [3], disease diagnosis [4],
and autonomous vehicles [5], with considerable success
in image classification, object recognition, and computer
vision [6]. In addition, DNNs continue to evolve in com-
plexity beyond human accuracy. The remarkable abilities
of DNNs include high computational capability and high
energy (power) consumption along with the availability of
massive data.

Research on DNNs advanced in the early phase by using
general-purpose computing processors, such as central pro-
cessing units (CPUs) and graphics processing units (GPUs).
However, domain-specific accelerators for DNNs are increas-
ingly required, as recent research show that DNN-specific ac-
celerators surpass CPUs and GPUs in terms of performance
and energy efficiency [7–13].

Applications such as datacenters leverage more general
high-performance DNN accelerators, which can efficiently
process various NNs, while mobile and deeply embedded
applications such as intelligent Internet-of-Things systems
focus on highly specialized accelerators to achieve high en-
ergy efficiency [14]. The high-performance DNN accelera-
tor, which we target in this paper, involves programmability

Received: 28 March 2020  |  Revised: 13 June 2020  |  Accepted: 2 July 2020

DOI: 10.4218/etrij.2020-0125

S P E C I A L I S S U E

Automated optimization for memory-efficient high-performance
deep neural network accelerators

HyunMi Kim   | Chun-Gi Lyuh  | Youngsu Kwon

This is an Open Access article distributed under the term of Korea Open Government License (KOGL) Type 4: Source Indication + Commercial Use Prohibition + Change
Prohibition (http://www.kogl.or.kr/info/licenseTypeEn.do).
1225-6463/$ © 2020 ETRI

AI SoC Research Division, Electronics and
Telecommunications Research Institute,
Daejeon, Rep. of Korea

Correspondence
HyunMi Kim, AI SoC Research Division,
Electronics and Telecommunications
Research Institute, Daejeon, Rep. of Korea.
Email: chaos0218@etri.re.kr

Funding information
This research was supported by Institute of
Information & communications Technology
Planning & Evaluation (IITP) grant funded
by the Korea government(MSIT) (No.
2018-0-00195, Artificial Intelligence
Processor Research Laboratory).

The increasing size and complexity of deep neural networks (DNNs) necessitate
the development of efficient high-performance accelerators. An efficient memory
structure and operating scheme provide an intuitive solution for high-performance
accelerators along with dataflow control. Furthermore, the processing of various
neural networks (NNs) requires a flexible memory architecture, programmable con-
trol scheme, and automated optimizations. We first propose an efficient architecture
with flexibility while operating at a high frequency despite the large memory and
PE-array sizes. We then improve the efficiency and usability of our architecture by
automating the optimization algorithm. The experimental results show that the archi-
tecture increases the data reuse; a diagonal write path improves the performance by
1.44× on average across a wide range of NNs. The automated optimizations signifi-
cantly enhance the performance from 3.8× to 14.79× and further provide usability.
Therefore, automating the optimization as well as designing an efficient architecture
is critical to realizing high-performance DNN accelerators.

K E Y W O R D S

accelerators, architecture, automation, deep neural network (DNN), optimization

www.wileyonlinelibrary.com/journal/etrij
mailto:﻿￼
https://orcid.org/0000-0003-4105-7639
http://www.kogl.or.kr/info/licenseTypeEn.do
mailto:chaos0218@etri.re.kr

506  |     KIM et al.

to process various NNs, enables the efficient implementation
of large memory and many processing elements (PEs), and
provides a software stack such as a complier with highly opti-
mized algorithms to effectively operate the accelerator.

Accordingly, we take the first step toward presenting a
memory-efficient architecture and automated optimization al-
gorithm for high-performance general DNN accelerators. Our
accelerator implementation operates at 1 GHz using a simple
data connection despite its large buffer size and operation unit.
Furthermore, we increase the data reuse by leveraging flexible
internal memory, programmable data control, and a memo-
ry-allocation algorithm, thereby maximizing the performance
of our accelerator along with automating hardware scheduling.

The rest of this paper is organized as follows. In Section 2,
we delineate neural networks (NNs) and the structure of DNN
accelerators. We propose a flexible and programmable archi-
tecture for efficient DNN accelerators in Section 3, and auto-
mating optimization algorithms are introduced in Section 4.
Next, in Section 5, we present the evaluation results, and we
conclude this study in Section 6.

2  |   BACKGROUND

2.1  |  Neural networks

Various types of NNs have been developed depending on the
applications. Among them, the most widely used NNs can
be categorized as multi-layer perceptrons (MLPs), convolu-
tional neural networks (CNNs), and recurrent neural networks
(RNNs). Notably, CNNs are utilized to extract a spatial feature
in image-domain applications, such as object detection, while
RNNs are well-suited for time-series prediction applications
such as speech recognition and natural language processing.
MLPs are useful to solve stochastic problems that involve ap-
proximation. However, for more complex problems, hybrid
NNs such as convolutional RNNs [15] and a combination of
multiple NNs [16] are also applied to improve the accuracy.

The NN architecture is composed of a directed acyclic
graph (DAG) that comprises a stack of multiple types of lay-
ers, such as a convolutional layer (CONV), fully connected
layer (FC), non-linear activation layer (ACTV), pooling lay-
ers (POOL), among others. FC and CONV layers generate
the output vector (H(x)) by performing a multiply-accumu-
late (MAC) between the input vector (x) and weight matrix
(W), followed by an element-wise addition (EW-ADD) of the
bias vector (b) as follows:

where CONV treats two-dimensional (2D) feature maps (fmaps)
with width (ie, Wi) and height (ie, Hi), as depicted in Figure 1,
and FC handles scalars, for an element of weight matrix and

input vector. ACTV applies non-linear operations, such as rec-
tified linear unit, sigmoid, and hyperbolic tangent, to the output
of the CONV or FC layer. POOL, which is optionally applied
after CONV, processes by selecting a maximum value or an av-
erage value of the values within the predetermined 2D area and
reduces the sample number of fmaps. In addition to the widely
used layers, the training performance can be enhanced using
techniques such as normalization and regularization, which are
processed via element-wise operations.

2.2  |  Structure of DNN accelerators

Domain-specific accelerators for DNN have been proposed
to achieve higher processing performance and better energy
efficiency than those achieved using conventional processors
such as CPU and GPU. As depicted in Figure 2, the high-
level block diagram of a DNN accelerator comprises a large
external memory (EM) such as DRAM, high-bandwidth in-
ternal buffer (IB), and computation engine that consists of an
array of PEs. An EM is essential for large-scale applications
such as DNNs, as the amount of activation data and weights
of layers is large and deeper NNs increase both the amount of
data and weight of the layers. However, DNN accelerators in-
corporate high-bandwidth IBs because of high-performance

(1)H(x)=Wx+b.

F I G U R E 1   CONV Computation. Nik input fmaps of size
Wi × Hi are convolved with Nik weights of size Wk × Hk using a
sliding window. In addition, CONV generates an output fmap of size
Wo × Ho. This process is repeated Mk times with different weights.
Consequently, Mk output fmaps of size Wo × Ho are produced. The Wo
or Ho is calculated using parameters such as padding or stride size

∗ =

…
…

F I G U R E 2   Architecture of the DNN accelerator

EM IB NoC

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE array

bus

On-Chip

     |  507KIM et al.

requirements. In addition, data-reuse techniques that utilize
IBs improve both energy efficiency and performance, as
EM access requires energy consumption of a higher order
than that required by on-chip buffers [9]. A PE array with
high parallelism executes operations such as MAC to pro-
cess the NNs mentioned in Section 2.1. Another important
microarchitecture for DNN accelerators is the network-on-
chip (NoC) design between IB/PEs and PEs. The NoC design
with a dataflow style considerably affects the performance in
terms of both throughput and latency.

2.3  |  Efficient DNN accelerators

The efficiency of DNN accelerators is evaluated on the basis
of both cost (ie, area and power consumption) and perfor-
mance (ie, throughput and latency). IB structures that support
flexible data layout improve the efficiency by maximizing
the data reuse and minimizing the power consumption. Low-
complexity NoC structures reduce cost and support high
bandwidths by implementing high frequencies. In addition,
the design of a small PE decreases the total area of a PE array,
as PE is replicated as required by the target operation per-
formance. Additionally, the programmable data access elimi-
nates a redundant data copy such as im2col-based CONV,
thereby reducing memory consumption and the data band-
width required between EM and IB. Another crucial factor
for performance is dataflow, which describes the manner of
dispatching and fetching operands to PEs.

In addition, hardware-dependent optimization algorithms
are indispensable along with an efficient hardware architec-
ture. The data-layout decision enhances the efficiency by
maximizing the data reuse in IB or PE array, as IB and PE
arrays can accommodate the total size of the activation data
and weights for DNNs. Maximizing the data reuse signifi-
cantly affects both performance and cost, as data movement
between IB and EM consumes considerable processing time
and high power. Although the data reuse is maximized in IB
by the efficient data-layout decision, data are still moved be-
tween IB and EM because IB is insufficient to store all the
data for DNNs. Therefore, efficient scheduling increases the
throughput by hiding the data-movement time. Finally, the
DNN accelerator is easily leveraged in various applications
by automating these algorithms.

3  |   ARCHITECTURE

We propose an architecture that includes the IB structure,
dataflow path between IB and PEs, and dataflow control-
ler for memory-efficient high-performance DNN accelera-
tors. The architecture aims to operate at a high frequency
with a large size of the PE array and IB for implementing

high-performance processors. We design an architecture
based on a short datapath to operate at a high frequency for
high-performance accelerators. Additionally, the architecture
based on the output-stationary dataflow, which reuses the
output within a PE during a computation, is adopted to enable
various high-performance operations via a technique such as
fusing operations as well as an efficient MAC operation.

3.1  |  Buffer structure and dataflow

In Figure 3, we depict the efficient large-scale IB structure
and the connection paths with a PE array which is a set of
systolic-arrays [17] based computational cores. IB comprises
a set of memory rows that are aligned with and arranged in
each row of the PE array. IB rows are implemented with sin-
gle-port SRAMs, which is called the sub-block to reduce the
chip area as shown in Figure 3. Only the datapath between
the corresponding buffer and PE array rows are connected for
input and output activations. Exceptionally, weights are fed
from a buffer row to the first PE core of the corresponding
PE array column as shown in Figure 3B. Each IB row stores
the loaded input activations and weights from EM prior to

F I G U R E 3   Proposed IB structure for DNN accelerators: (A)
fmap dataflow including the diagonal path and (B) weight dataflow.
The solid and dashed lines represent the input and output fmap,
respectively, and the red line represents the diagonal path in (A). The
dashed line in (B) represents the weight dataflow and is implemented
via a feed-through way in our design

1st

core
1st row

2nd row

3rd row

4th row

On-chip memory (N rows) Computational Logic Core Array (NxN)

0 1 2 3 4 5 6 7

Diagonal path

1
st

row (including 8 subblocks)

1st row

2
nd

row

3
rd

row

4
th

row

On-chip memory (N rows) Computational Logic Core Array (NxN)

0 1 2 3 4 5 6 7

1
st

row (including 8 subblocks)

(A)

(B)

508  |     KIM et al.

performing a computation. When starting a computation,
input activations in an IB row are fed to the first PE core
of the corresponding PE array row, as depicted by the solid
arrows in Figure 3A. Similarly, the weights in an IB row
enter the first core of the corresponding PE array column,
as depicted in Figure 3B. The input activations in the first
core of the PE array row are horizontally transferred, and the
weights in the first core of the PE array column flow verti-
cally until the data and weights arrive at the last core of the
PE array row or column, respectively. The PE cores process
operations for DNNs, by using systolic input and weight sup-
plies. Because this architecture supports the output-stationary
dataflow, the necessary data are continuously supplied until
the final output is calculated. For example, for convolution
operations, whole 3D input tensor data and weights fed to
PEs with the proposed short datapath and the output register
within the PE core store the temporary and result data by an
output-stationary architecture. After finishing a computation
of a PE core, as depicted by the dashed lines of Figure 3A, the
output is delivered from right to left in a row of the PE array
in a systolic manner and eventually stored to the correspond-
ing IB row. The PE core includes an adder and a multiplier
for computation such as MAC, element-wise operation, recti-
fied linear unit (ReLu), and even pooling, a few data regis-
ters for temporarily storing data or transferring data between
PEs, and several multiplexers and various datapath between
registers and arithmetic elements for the configuration of the
target operation.

In addition to the basic dataflow using the row and column
connection structure each for activation data and weights, the
diagonal path for the input and output activation dataflow,
which is denoted by the red lines, is introduced between an
adjacent buffer and a PE row (notably, the diagonal path con-
nects a PE-array row, and the buffer row is located diagonally
below the PE-array row) for efficient operations, especially
for operations with high data-reuse rates such as CONV. The
diagonal datapath prevents the input activation duplication in
multiple buffer rows and rearranges the output activation be-
tween buffer rows, allowing for a padding sand kernel shape
of the operation, which will be processed in the next layer.
For example, as depicted in Figure 4, a Wi × 2 input fmap (ie,
ifmap) can be assigned to a buffer row when processing the
2D CONV of Wi × Hi ifmap by using three 3 × 3 kernels with
a zero-padding size of 1. Notably, the 3 × 3 kernels are stored
in separate sub-blocks to that for ifmap. To calculate the first
output row, the I1–I6 input data are read from buffer row 0
and fed to the first PE row by using the corresponding row
path (ie, the black bold line in Figure 3A), while the diagonal
path is used to feed the I7–I9 ifmap to the first PE array row.
To access data, the addresses for the target input and weight
data are generated cycle by cycle in synchronization. The
padding and diagonal path area are also identified, and their
special signals are made in the data-access controller (DAC),

as will be described in Section 3.2. If the padding size of the
next processed CONV is 1, the output addresses are calcu-
lated, allowing for the padding area. In addition, the diagonal
write path is active when the second row of output fmap (ie,
O2) is stored in the second buffer row from the first PE row.
This proposed scheme eliminates the redundant data stored
in the buffer and enables data reordering during the computa-
tion stage, without an additional data-reordering stage or data
movement so that it can improve memory efficiency and the
data-reuse rate. Each amount of three data components, that
is, input, output activations, and weights, significantly varies
depending on the NN structure and an IB row stores all the
components that are simultaneously accessed during a com-
putation stage despite implementing with single-port SRAM.
Therefore, determining the number of sub-blocks for a buf-
fer row is important for flexibility, concurrent accessibility,
and the chip area. We note that the use of smaller buffers

F I G U R E 4   Example of buffer allocation and dataflow: (A)
example convolution parameters (Wi × Hi ifmap and three 3 × 3
kernels), (B) buffer allocation of ifmap and weights, and ifmap's data
flow, and (C) buffer allocation and dataflow of the output fmap

W1 W2 W3

W4 W5 W6

W7 W8 W9∗

input fmap (or activation) weight (or kernel)

I10 I11 I12

I1 I2 I3

I4 I5 I6

I7 I8 I9

I13 I14 I15

…

…

W1 W2 W3

W4 W5 W6

W7 W8 W9

W1 W2 W3

W4 W5 W6

W7 W8 W9
: padding area

I10 I11 I12

I7 I8 I9

I13 I14 I15

I1 I2 I3

I4 I5 I6

Buffer row 0

Buffer row 1

Buffer row 2

W1 W2 W3

W4 W5 W6

W7 W8 W9

W1 W2 W3

W4 W5 W6

W7 W8 W9

W1 W2 W3

W4 W5 W6

W7 W8 W9

I1 – I6

1st PE row

I7 – I12

2nd PE row

…

O2

O3

O4

O5

O1

Buffer row 0

Buffer row 1

Buffer row 2

O1

1st PE row

O3

2nd PE row

…

(A)

(B)

(C)

     |  509KIM et al.

increases the total chip area. We will evaluate the impact of
the number of sub-blocks in Section. 5.

3.2  |  Data-access controller

To access (ie, read and write) a buffer row for the abovemen-
tioned three data components during a computation stage, the
following three DACs are proposed for each of the three com-
ponents: DAC-I for input activations, DAC-W for weights,
and DAC-O for output activations. DACs control the data-
flow by generating a sequence of read/write addresses every
cycle. A DAC comprises a programmable N-dimensional
nested-loop based address generator. The programmable
parameters include a repeat count and an incremental offset
for each loop dimension, as well as an initial address. The
number of dimensions, which corresponds to the number
of changed directions of the accessed data within a tensor,
is decided by analyzing the accessed data order of various
NNs. For example, for the operation that fuses a convolution
layer and pooling layer (CONVPOOL), DAC-I adopts the
seven-level nested-loop structure to support seven dataflow
directions: width, height and channel directions of the kernel
data, horizontal and vertical directions for pooling, and two
sliding-window directions. The address of the accessed data
at a single cycle is generated using Algorithm 1.

where addr0 denotes the initial address and ux and incx the total
repeated count and index increments of each loop, respectively.
The programmable DACs are designed only using adders and
multiplexers instead of expensive multipliers, and the generated
addresses are transferred in a systolic manner from the first
to last IB row. The accessed data by the generated addresses
are synchronized with the PE configuration signal for the tar-
get computation and fed to the PE array. Additionally, DAC-I
and DAC-O contain the diagonal path control to access the IB
row below and the padding control to process the padding area
using the generated address and supplementary information,
such as padding/stride sizes and indicators of which loop level
represents which direction component.

Figure 5 depicts the architecture for a three-level ad-
dress generator. ix and ix_addr are set by zero and the ini-
tial address addr0, respectively, before operating DAC.
The address of the accessed data in next time is generated
in synchronization with the data valid signal (ie, light pur-
ple box). Since PEs perform the various operations that
require different data components, the data valid signal
supports the condition that the required and accessed data
is synchronized with the PE configuration signals for a
target operation. The blue boxes are the registers for pro-
grammability and the generated address is stored in the
yellow box. The loop control block of Figure 5A controls
the incremental state of the Do-loop in Algorithm 1 and
generates the valid signals in the loop level that are col-
ored by the grey. The loop valid signals are transferred to
the address generator block of Figure 5B and select the
valid address.

F I G U R E 5   Architecture of 3-level nested Do-loop based address-
generator: (A) loop control block and (B) address generator block

data

valid

u1

u2

u3

COMP

i1

ADD1

ADD1

i2

ADD1

i3

COMP

COMP

i2_valid

done

i3_valid

0

1

0

1

0

1

ADD1 Adder of input and ‘1’

ADD Adder of inputs

ux and incx

The generated address

Signal for synchronization

ADD
inc3

i2_addr

inc2

inc1

i2_valid

i3_valid data

valid

ADD

ADD

i3_addr 0

1

0

1
0

1

0

1
0

1

i3_addr

0

1

i2_valid

i3_valid

i3_valid

(A)

(B)

510  |     KIM et al.

4  |   AUTOMATED OPTIMIZATION

The optimizations are described as the key technology that
maximizes the efficiency of the DNN accelerator by using
the proposed memory-efficient structure and dataflow-control
scheme, in this section. First, the abovementioned three data
components are allocated in a buffer row to efficiently exploit
the flexible buffer. Second, the parameters are defined for op-
timal scheduling, which maximizes a throughput. Third, the
automation technique for deciding the optimal data layout and
scheduling is proposed to increase the performance of the pro-
posed accelerator for various NNs. Finally, fusing operations
are introduced to improve the data-reuse rate by removing the
processing time required for the data movement.

4.1  |  Optimization of buffer allocation

For the efficiency of the proposed IB and PE array archi-
tectures and data-access scheme, the optimization algorithm
adopts three techniques including slicing and tiling for ac-
tivation, and flexibly allocating three data components in
multiple buffer sub-blocks. In this section, we describe the
buffer-allocation optimization for the CONVPOOL opera-
tion that deals with 3D tensors, as an example.

First, an input 3D tensor that contains a padding area is hori-
zontally sliced at the same height (ie, slice height), and a slice is
allocated in a buffer row, as depicted in Figure 6 for the row-wise
IB structure. The sliced and allocated input tensors are fed and
exploited as an operand for parallel computing. Because of the
row-wise datapath including the diagonal path, the slice height
is decided by the kernel height, vertical kernel stride size, verti-
cal pooling size, and vertical pooling stride. Specifically, a slice
height is decided to satisfy the following two conditions.

•	 The slice height is set as a multiple of (the vertical stride

size of pooling × the stride vertical size of the convolution
kernel).

•	 (slice height × 2) is greater than/equal to (kernel height–1).

The batch size can be used as an additional factor to de-
cide the slice height because one batch can be allocated to
multiple buffers.

When the capacity of IB is insufficient to store the total
data including input, output, and weight of one convolution
layer, a tensor is vertically tiled. The tiled input tensor is
loaded from EM to IB after slicing so that the buffer capacity
is validated with the tensor piece size, which is determined
by the combination of tiling and slicing. This procedure is re-
peated until the buffer row can accommodate a tensor piece.
The output tensor is also stored in the buffer row after finish-
ing a computation in the PE array. If IB is sufficient to store
input, output, and weights without tiling, the output is reused
in IB for the next operation. Otherwise, the output tile is tem-
porarily stored in IB rows and loaded out to EM to secure the
memory space for processing another tile. Unlike tensor data,
the weights of a layer are tiled on the basis of the number of
columns in the PE array (ie, Aw in Figure 6), as the weights
are passed in column-wise. Assuming that the size of the PE
array is Aw × Ah (ie, 4 × 4 in Figure 6) and that the number of
weights for a layer is M, one weight tile includes the number
of max (M, Aw) and the number of weight tiles is M∕A

w
.

Finally, an input slice, an output slice, and a weight tile
are flexibly allocated in the sub-blocks of a buffer row, al-
lowing for simultaneous buffer access. During the computa-
tion phase, an input slice and a weight tile are concurrently
read from a buffer row and transferred to the first core of
the corresponding row and column, respectively, as two op-
erands. Therefore, the buffer sub-blocks for an input slice
and a weight tile are separated to operate without latency for
synchronization. This is because if sub-blocks for input and
weights are integrated, the accelerator requires an additional
processing time (latency) to synchronize between input and
weight feedings. However, the sub-block separation for the
input and output slices is optionally determined by compar-
ing the performance during the automated optimization. The
separated sub-block allocation improves throughput while
the integrated sub-block allocation increases the buffer utili-
zation by removing buffer fragmentation.

4.2  |  Scheduling of hardware operations

The scheduling of hardware operations is one of the most sig-
nificant optimization steps for performance maximization. The
hardware operations are defined as input-loading (IL), weight-
loading (WL), computation (CT), and output-storing (OS) for
scheduling. The performance of the four operations is first
calculated by exploiting the results of the buffer allocation,

F I G U R E 6   Example of fmap sliced by the slice height, buffer
allocation, and dataflow in the architecture that comprises a 4 × 4 PE
array and 4 buffer rows

input dataflow output dataflow weight dataflow

Ho

Wo
M

Wo

Buffer row 0

Buffer row 1

Buffer row 2

Buffer row 3

Buffer row 0

Buffer row 1

Buffer row 2

Buffer row 3

Kw N

Kh

Input Weight Output

Wi

Hi

N

Wi

Slice

Height

MAX(M, Aw)

Aw : width of PE array

A
h

 : h
eig

h
t o

f P
E

 array

     |  511KIM et al.

as each hardware operation time relies on the processed data
size. With the calculated performance of each operation, search
spaces are explored. The search spaces are determined using a
combination of the following condition parameters.

Cond. 1. The capacity of weights for the overall NN.
Cond. 2. The availability of double buffering for each

component.
Cond. 3. The separation/integration of input and output

buffers.
Cond. 4. Input and output data reuse.
For example, the initial search space for each layer is set

to 24 if only one data for every three data components are
present. When the weights for the overall NN are acceptable
in an IB with a spare buffer space for input and output acti-
vations, the number of search spaces is 23 (ie, 8), where input
double buffering or not = 2 options, output double buffering
or not = 2 options, and input and output buffers separation
or integration = 2 options, thereby totaling to 2 × 2 × 2 = 8
options. However, when IB is insufficient to store the overall
weights, the number of search spaces is 24 (ie, 16) by adding
a weight double-buffering parameter.

After setting the number of the initial search spaces to
24, they are reduced by checking the input and output data
reuse in IB between the processed layers, as the double buff-
ering parameter is removed if the data are reused in IB. The
final search spaces are explored on the basis of a pre-defined
scheduling model by using the dependency between hardware
operations. In Figure 7, we depict an example of scheduling
models, where the output and weight exploit double buffers.
The separation and integration options of the input and output
buffers indicate the different CT performance since simultane-
ous access is impossible. Therefore, the lighter purple boxes
indicate a lower performance than those of the darker purple
boxes due to the use of the integrated input and output buffer
0. Although the separated buffer option consumes the shorter
operation time when processing the same amount of data, the
integrated buffer option can lead to whole performance im-
provement, especially for the target NN which processes large
data, by increasing the buffer utilization.

4.3  |  Automating optimizations

Automating the optimization algorithms is necessary to
apply various NNs to the designed DNN accelerator. The au-
tomation algorithm includes the parameterization of search
spaces, the cost model, and a searching method. Specifically,
a searching method allows for the number of the handled
data for a target operation, the latency hiding technique, and
the data-reuse methods. The automated optimization aims to
maximize the data reuse in IB-level after optimizing the PE-
level data reuse in a prior stage such as fusing operations in
Section 4.5. The number of the handled data is also decided

during the PE-level data-reuse stage. The weight data-re-
use is searched by verifying the IB capacity for the whole
weights for a target NN because weights are used regardless
to test inputs. Since the latency hiding is realized by using
double buffering, the search spaces include the availability
of double buffering in each data component. The additional
exploration space for our architecture is the separation pos-
sibility between input and output buffers for an efficient
sub-block utilization. The buffer allocation search spaces in-
cluding tiling, slicing, IB-level data reuse between operations
are combined with the pre-determined search spaces. During
optimization, the automation algorithm validates the search
spaces that are the combination of the optimization param-
eters for buffer allocation and the scheduling search spaces,
following which it calculates the cost. The space with the best
cost is decided as the final space by comparing the costs of all
the available spaces with one another. We exploit the hard-
ware behavior modeling to compute the cost. The scheduling
model is parameterized using the cost of four operations, that
is, IL, WL, CT, and OS, and the cost is calculated based on

F I G U R E 7   Scheduling example of a search space with double
buffers for output and weight when two input tiles and two weight tiles
are processed: (A) weight-loading priority and separated in/out buffers,
(B) input-loading priority and separated in/out buffers, (C) weight-
loading priority and integrated in/out buffer, and (D) input-loading
priority in/out buffer

LD-W0 LD-W1

LD-I0

OP

(W0, I0, O0)

OP

(W0, I0, O1)

LD-I0

OP

(W1, I0, O0)

OP

(W1, I0, O1)

ST-O0 ST-O1

LD-W0 LD-W1

ST-O0 ST-O1

LD-W0 LD-W1

LD-I0

OP

(W0, I0, O0)

LD-I0

OP

(W0, I0, O1)

LD-I0

OP

(W1, I0, O0)

LD-I0

OP

(W1, I0, O1)

ST-O0 ST-O1 ST-O0 ST-O1

Time

LD-W#: Loading weights from EM to IB {0 or 1}

LD-I#: Loading input from EM to IB {0 or 1}

ST-O#: Storing output from IB {0 or 1} to EM

OP(W#, I#, O#): weight buffer W#, input buffer I# and output buffer O# are utilized

during operation on PE array

LD-W0 LD-W1

LD-I0

OP

(W0, I0, O0)

LD-I0

OP

(W1, I0, O1)

ST-O0 ST-O1

OP

(W0, I0, O0)

LD-I0

OP

(W1, I0, O0)

ST-O0

LD-I0

ST-O1

LD-I0

OP

(W0, I0, O0)

LD-I0

OP

(W1, I0, O1)

ST-O0 ST-O1

LD-W0 LD-W1 LD-W0 LD-W1

ST-O0

OP

(W0, I0, O0)

OP

(W1, I0, O1)

ST-O1

LD-W0 LD-W1

LD-I0

OP

(W0, I0, O0)

LD-I0

OP

(W1, I0, O1)

ST-O0 ST-O1

OP

(W0, I0, O0)

LD-I0

OP

(W1, I0, O0)

ST-O0

LD-I0

ST-O1

LD-I0

OP

(W0, I0, O0)

LD-I0

OP

(W1, I0, O1)

ST-O0 ST-O1

LD-W0 LD-W1 LD-W0 LD-W1

ST-O0

OP

(W0, I0, O0)

OP

(W1, I0, O1)

ST-O1

(A)

(B)

(C)

(D)

512  |     KIM et al.

the hardware behavior modeling and the data size decided
via buffer allocation. Therefore, the final cost for a condi-
tion is yielded with the hardware model and the scheduling
model. A summary of the automated optimization process
is presented in Algorithm 2. Additionally, the cost of each
hardware operation is weighted to allow for variations in the
hardware implementations. The weights can be updated to
apply the practical hardware operation model via an experi-
ment in the real environment.

where Ni, No, and Nw denote the number of the processed
data for input, output, and weight components, respectively,
and SP represents whether the buffer structure for input and
output is unified or separated. The term DB indicates whether
double buffering is used, and its value is set to 1 if the data
are reused between the processed operations.

In addition to Algorithm 2, the batch size can be com-
bined with search spaces during exploratory buffer allocation
as a condition since the amount of handled data is different by
the batch size, and impacts on the PE array utilization and IB-
level data reuse. Therefore, batch size searching can be also
added to the automated optimization. We have elucidated the
optimization results in Section 5.3, including the batch size
searching algorithm.

4.4  |  Fusing operations

The fusing operations of DAGs are one of the essential
factors to improve the efficiency of DNN accelerators,
as fused operations are processed without an additional
data movement between the PE array and IB or between
IB and EM. In this section, we describe the processing
of the fusing operation based on the proposed archi-
tecture. We previously discussed the data control for
CONVPOOL, which fuses CONV and POOL, as an exam-
ple in Section 3.2. Therefore, we will discuss the fusing
of CONV and the residual connection (RES), also called
shortcut or skip connection, which is used in ResNet [18]
as another example.

ResNet, which is one of the widely used NNs, intro-
duces a RES to build the residual blocks and identity
blocks to increase the image-recognition accuracy, as de-
picted in Figure 8. RES operates by adding output activa-
tions from two layers in an element-wise manner. Because
our architecture uses output-stationary dataflow, the out-
put of CONV3 is stored in a register file of PEs after the
convolution operation, and then x in IB is fed to PEs for
EW-ADD. For the processing of the fused CONV and
RES (CONVRES), x can be loaded out to EM or stored
in IB after processing CONV1 according to the IB state.
Therefore, the parameters for input x of CONVRES are

F I G U R E 8   Structure of the basic blocks for ResNet: (A) residual
block and (B) identity block. The red line denotes the residual (skip or
shortcut) connection

CONV1
(1x1)

CONV2
(3x3)

CONV3
(1x1)

x

H(x)

CONV1 (1x1)

CONV2 (3x3)

CONV3 (1x1)

x

H(x)

CONV4
(1x1)

(A) (B)

     |  513KIM et al.

inserted in buffer allocation and scheduling. Specifically,
input x is first allocated in IB and then loaded from EM to
IB for CONV1. After completing the CONV1 operation,
a check is made to determine if the IB space for x is still
sufficient to process CONV2 without performance degra-
dation during the optimization of the buffer allocation. If
the space is sufficient, the buffer for the three components
is allocated with the remaining buffer space, except for the
x space for CONV3. Otherwise, four data components in-
cluding x are used for the buffer allocation. For searching
the scheduling spaces for CONV3, the input component for
x is added as a parameter. When x is stored in the IB during
the processing of CONV2, the data-reuse parameter for x is
set, and because x is not moved from EM to IB (ie, x data
reuse), double buffering for x is not used.

5  |   EVALUATION

We evaluate the proposed architecture and optimizations in
this section. The experimental setup is first described and
then the experimental results are presented.

5.1  |  Experimental environment

We have presented the accelerator model on the basis of
the architecture presented in [24] as the baseline. However,
the baseline architecture was modified according to the
proposed buffer, datapath, and data control in Section. 3.
In addition, we designed a simulator engine to evaluate
the configurable architecture. The configurable architec-
tural parameters are as follows: the PE array size, buffer
sub-block size, number of sub-blocks for a buffer row, and
diagonal-path availability. For the complete accelerator
system, we implemented the system model using DDR4
memory for EM and 256-bit-width advanced extensible in-
terface system bus for the data movement between EM and
IB. For an EM-access module, two read channels and one
write channel, which are responsible for the input, output,

and weight components, respectively, were additionally
designed for the experiments.

We evaluate the proposed architecture and optimization al-
gorithms using the popular CNNs summarized in Table 1. This
is because we target the high-performance accelerator imple-
mentation and CNN process operations with higher complexity,
resulting in more complicated dataflow control and a larger acti-
vation and weight size than those of MLPs and RNNs. Notably,
AlexNet [19], VGGNet [20], and ResNet [18] are well-known
NNs that have won in ImageNet ILSVRC [25] for image classi-
fication. Yolov2 [21] and yolov3 [22] were developed to detect
objects in real-time so that they could be used in many practical
applications. SqueezeNet [23] was designed for lightweight ap-
plications with small parameters. The test NNs have different
layer structures, memory footprints, and number of operations.

5.2  |  Hardware-configuration comparison

In Figure 9, we compare several NNs based on the speedup
of the processing time for various hardware architecture con-
figuration factors. All the optimization algorithms mentioned
in Section 4 are applied to ensure a fair comparison. The base-
line architecture is configured using a 128 × 128 PE array and
256 KB of a memory row with 8 sub-blocks. Each configura-
tion of the baseline is changed while maintaining other con-
figurations, and the hardware performance with the changed
configuration is calculated and compared with the baseline
configuration. The speedup for comparison between the base-
line and the changed configurations is computed as follows:

where the processing time for the target NN is estimated by
the simulator. Compared with SqueezeNet, the performance
of VGG-16 is dramatically affected by the PE array size and
buffer size because of the large data size, including weights
and fmap. However, the number of sub-blocks is less impactful
because the optimization compensates for the degradation by

(2)Speedup=
Processing Timebaseline

Processing Timechanged

T A B L E 1   Layer structure and parameters of the evaluated NNs

NNs CONVs FCs POOLs RESs
Total
weights

Max.
weightsa 

Max.
fmapsa,b 

of
MACs

Alexnet [19] 5 3 6 N/A 62.4 M 37.8 M 0.2 M 724 M

VGG-16 [20] 13 3 5 N/A 138.4 M 102 M 4 M 15.3 B

ResNet-50 [18] 50 N/A 2 16 23.8 M 2.4 M 2.1 M 2.5 B

Yolov2-416 [21] 23 N/A 5 N/A 50.9 M 11.8 M 6 M 14.7 B

Yolov3-416 [22] 75 N/A N/A 23 61.9 M 4.7 M 8.3 M 5.1 B

SqueezeNet [23] 26 N/A 3 N/A 1.2 M 0.5 M 1.3 M 1.7 B
aMax. Weights and fmaps are the maximum required memory footprint for weights and fmaps data, respectively, when processing layer by layer.
bThe activations contain both input and output fmaps of a layer.

514  |     KIM et al.

decreasing the number of sub-blocks. On the other hand, the
running time for the optimization with a small number of sub-
blocks is increased because of the inferior hardware condition.
The diagonal write path improves the performance by 1.44× on

average, as it decreases the data movement between IB and EM
to rearrange the data. The performance of SqueezeNet is main-
tained in almost all the configurations, as it is too small to affect

F I G U R E 9   Performance comparison on the basis of hardware configurations: (A) buffer size, (B) PE array size, (C) number of sub-blocks,
and (D) use of the diagonal write path

1.5

2.3

1.0
1.2 1.2

1.0

2.6

5.1

1.2

2.2

1.7

1.0

0

1

2

3

4

5

6

AlexNet VGG-16 ResNet-50 Yolov2 Yolov3 SqueezeNet

S
p

ee
d

u
p

Baseline (128x128 PE Array)

64x64 PE Array

32x32 PE Array

1.2

2.4

1.1

1.7

1.1
1.0

1.5

5.7

2.8

1.9

3.2

1.2

0

1

2

3

4

5

6

7

AlexNet VGG-16 ResNet-50 Yolov2 Yolov3 SqueezeNet

S
p

ee
d

d
u

p
Baseline (256KB per Buffer Row)

128KB per Buffer Row

64KB per Buffer Row

1.02

1.12
1.06 1.07

1.12 1.01
1.00

1.20

1.34
1.30

1.41

1.00

0.0

0.5

1.0

1.5

2.0

AlexNet VGG-16 ResNet-50 Yolov2 Yolov3 SqueezeNet

S
p

ee
d

u
p

Baseline (8 Buffer subblocks / row)

6 Buffer subblocks / row

4 Buffer subblocks / row
1.9

1.8

1.3

1.4
1.3

1.0

0.0

0.5

1.0

1.5

2.0

2.5

AlexNet VGG-16 ResNet-50 Yolov2 Yolov3 SqueezeNet

S
p

ee
d

u
p

Use diagonal write path

(B)(A)

(C) (D)

F I G U R E 1 0   Efficiency of automated optimization algorithm

7.7

14.8

6.7

5.0
5.6

3.8

0

2

4

6

8

10

12

14

16

AlexNet VGG-16 ResNet-50 Yolov2 Yolov3 SqueezeNet

S
p
ee

d
u

p

Optimization

F I G U R E 1 1   Efficiency of fusing CONV and RES

3.0

1.4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

ResNet-50 Yolov3

S
p
ee

d
u

p

Fusing CONVRES

     |  515KIM et al.

the hardware configurations that provide high performance.
Moreover, SqueezeNet has been fully optimized using the opti-
mization algorithm by maximizing data reuse in IB.

5.3  |  Optimization performance

The efficiency of the optimization algorithms is evaluated
by comparing their performances with that of the baseline.
To that end, we exploited the baseline hardware mentioned
in Section 5.2. The baseline optimization is defined using
single buffering for all the data components and unified in/
out buffer. For the unified buffer, we generated the special
PE array control command to prevent the SRAM read and
write conflict by using a delay. The unified buffer option
degrades the performance of the PE operation because of
the delay cycles while increasing the data reuse in IB via
reduced fragmentation. Therefore, the automated optimi-
zation system enhances the performance by analyzing the
layer parameters of NN and searching the best optimiza-
tion condition. The speedup comparison between the base-
line and the optimized algorithms is depicted in Figure 10.
Consequently, the performance is considerably improved
in the case of the following automated optimization algo-
rithms: buffer-allocation algorithm (including slicing, til-
ing, and assigning flexible buffer) and scheduling-search
algorithm. Expectedly, the automated optimization algo-
rithm significantly improves the performance.

5.4  |  Analysis of fusing operations

To analyze the efficiency of the fusing operations, we consider
CONVRES of Yolov3 and ResNet as the test layer. Because
the evaluated NNs include 23 and 16 RES operations, respec-
tively, as presented in Table 1, the performance improvement
due to the fusing operations significantly affects the overall
performance. In Figure 11, we depict the performance com-
parison between the fused (ie, CONVRES) operation and
separate operations (ie, CONV and RES, respectively). The
speedups of ResNet and Yolov3 are 3× and 1.4×, respectively,
as the fusing technique minimizes the data movement between
IB and EM or between PEs and IB. Specifically, our output-
stationary based architecture is considerably effective when
fusing and processing the operations without weights such as
RES and POOL. In conclusion, high-performance accelerators
involve operation-fusing optimization.

5.5  |  Hardware implementation

The designed accelerator was synthesized using the Synopsys
Design Compiler with the TSMC 28-nm library, and it achieved

an operating frequency of 1 GHz. The layout of the synthesized
architecture with a 128 × 128 PE array is depicted in Figure 12A.
A PE is designed for float16 operators and 32 TFLOPS is sup-
ported. The IB comprises 128 rows to fit to a PE array size, and
a buffer row is divided into 8 sub-blocks where a buffer sub-
block is 32 KB. Consequently, the accelerator is implemented
using a 32 MB on-chip SRAM and 16 384 PEs. The chip-area
estimate is 494 mm2 from the layout and the area breakdown of
the synthesized accelerator is depicted in Figure 12B. NoC ac-
counts for only 0.23%, as we implement the policy that NoC is
connected only between adjacent IB rows and PEs and between
PEs and PEs. The miscellaneous includes the data-movement-
management unit between IB and EM, DAC, and the main con-
trol logics. Therefore, the high-performance accelerator, which
can operate at high frequency, can be achieved using a small
programmable dataflow and data-movement controller, when
the PE-array and buffer sizes are largely increased because of
the systolic-array-based architecture and simple NoC struc-
ture. We additionally estimate the power consumption of the

F I G U R E 1 2   Synthesized result of the proposed DNN
accelerator: (A) layout of the designed DNN accelerator and (B) area
breakdown of the synthesized architecture

Internal
Buffer PE Array

Misc.

N
o
C

54%43%

0.023% 3%

Buffer
PE array
NoC
misc.

(A)

(B)

516  |     KIM et al.

synthesized accelerator using Synopsys Prime Time. The static
power dissipates by approximately 15 W and a 12.5 W dynamic
power consumption is estimated by applying a 5% toggle rate.

6  |   CONCLUSIONS

We presented a flexible buffer structure, effective dataflow
for fusing operations, and programmable data-access con-
trol for high-performance DNN accelerators. Based on the
proposed architecture, we automated the optimization algo-
rithms to maximize performance. The parameters and search
spaces were defined, and the automation algorithm based on
the exact hardware model was proposed to efficiently oper-
ate the hardware. These combined techniques achieved the
implementation of a high-performance accelerator with a
large PE array and IB operating at a high frequency, thereby
providing the convenience for processing various NNs. In
addition, the results of the fusing operations showed the pos-
sibility of tighter optimizations. However, automating the
operation fusion remains to be explored in the future.

ORCID
HyunMi Kim https://orcid.org/0000-0003-4105-7639

REFERENCES
	 1.	 Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature 521

(2015), 436–444.
	 2.	 L. Besacier et al., Automatic speech recognition for under-re-

sourced languages: a survey, Speech Commun. 56 (2014), 85–100.
	 3.	 K. Arulkumaran, A. Cully, and J. Togelius, AlphaStar: An evolution-

ary computation perspective, arXiv preprint arXiv:1902.01724v2,
2019.

	 4.	 M. Fatima and M. Pasha, Survey of machine learning algorithms for
disease diagnostic, J. Intell. Learn. Syst. Aapplicat. 9 (2017), 1–16.

	 5.	 S. Grigorescu et al., A survey of deep learning techniques for au-
tonomous driving, arXiv preprint arXiv:1910.07738, 2019.

	 6.	 I. S. Krizhevsky and G. E. Hinton, ImageNet classification with
deep convolutional neural networks, in Proc. Int. Conf. Neural Inf.
Process. Syst. (Nevada, USA), 2012, 1097–1105.

	 7.	 J. Albericio et al., Cnvlutin: Ineffectual-neuron-free deep neural
network computing, in Proc. Int. Symp. Comput. Architecture
(Seoul, Rep. of Korea), (2016), 1–13.

	 8.	 S. Han et al., EIE: Efficient inference engine on compressed deep
neural network, in Proc. Int. Symp. Computer Architecture (Seoul,
Rep. of Korea), (2016), 243–254.

	 9.	 Y.-H. Chen et al., Eyeriss: An energy-efficient reconfigurable ac-
celerator for deep convolutional neural networks, IEEE J. Solid-
State Circuits 52 (2017), 127–138.

	10.	 Y. Chen et al., DaDianNao: A machine-learning supercomputer,
in Proc. Int. Symp. Microarchitecture (Cambridge, UK), (2014),
609–622.

	11.	 N. Jouppi et al., In-datacenter performance analysis of a ten-
sor processing unit, in Proc. Int. Symp. Computer Architecture
(Toronto, Canada), (2017), 1–12.

	12.	 Y. H. Chen et al., Eyeriss v2: A flexible accelerator for emerging
deep neural networks on mobile devices, IEEE J. Emerg. Sel. Top.
Circuits Syst. 9 (2019), 292–308.

	13.	 V. Sze et al., Efficient processing of deep neural networks: A tuto-
rial and survey, Proc. IEEE 105 (2017), 2295–2329.

	14.	 R. Andri et al., YodaNN: An architecture for ultra-low power bi-
nary-weight cnn acceleration, IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 37 (2018), 48–60.

	15.	 Y. C. Yoon et al., Image classification and captioning model
considering a CAM-based disagreement loss, ETRI J. 42 (2020),
67–77.

	16.	 J. Jung and J. Park, Improving visual relationship detection using
linguistic and spatial cues, ETRI J. 42 (2020), 399–410.

	17.	 J. A. B. Fortes and B. W. Benjamin, Systolic arrays - From concept
to implementation, IEEE Comput 20 (1987), 12–17.

	18.	 K. He et al., Deep residual learning for image recognition, in Proc.
IEEE Conf. Comput. Vision Pattern Recogn. (Nevada, USA),
2016, 770–778.

	19.	 I. Sutskever Krizhevsky and G. Hinton. Imagenet classification
with deep convolutional neural networks, in Proc. Adv. Neural Inf.
Process. Syst. (Nevada, USA), 2012, 1106–1114.

	20.	 K. Simonyan and A. Zisserman, Very deep convolutional net-
works for large-scale image recognition, in Proc. Int. Conf. Learn.
Representations (San Diego, USA), 2015.

	21.	 J. Redmon and A. Farhadi, YOLO9000: Better, faster, stronger,
arXiv preprint, arXiv1612.08242, 2016.

	22.	 J. Redmon and A. Farhadi, Yolov3: An incremental improvement,
arXiv preprint, arXiv:1804.02767, 2018.

	23.	 F. N. Iandola et al., Squeezenet: Alexnet-level accuracy with
50x fewer parameters and; 0.5 mb model size, arXiv preprint,
arXiv:1602.07360, 2016.

	24.	 Y. Kwon et al., Function-safe vehicular ai processor with nano
core-in-memory architecture, in Proc. IEEE Int. Conf. Art. Intel.
Circuits Syst. (Hsinchu, Taiwan), 2019, 127–131.

	25.	 O. Russakovsky et al., ImageNet large scale visual recognition
challenge, arXiv preprint, arXiv:1409.0575, 2014.

AUTHOR BIOGRAPHIES

HyunMi Kim received her BS and MS
degrees in Electronic Engineering
from Inha University, Incheon, Rep. of
Korea in 2004 and 2006, respectively,
and her PhD degree in Computer
Software from the University of
Science and Technology, Daejeon,

Rep. of Korea in 2018. Since 2012, she has been with the
Electronics and Telecommunications Research Institute
and is currently with the AI SoC Research Department as
a senior engineer. Her research interests are in neural net-
work systems including AI processors and DL compilers,
SoC architecture design, optimization algorithms for SoC
systems, and signal processing for multimedia
applications.

https://orcid.org/0000-0003-4105-7639
https://orcid.org/0000-0003-4105-7639

     |  517KIM et al.

Chun-Gi Lyuh received his BS degree
in Computer Engineering from
Kyungpook National University,
Daegu, Rep. of Korea in 1998. He re-
ceived his MS and PhD degrees in
Electrical Engineering and Computer
Science from the Korea Advanced

Institute of Science and Technology (KAIST), Daejeon,
Rep. of Korea in 2000 and 2004, respectively. He joined
the Electronics and Telecommunications Research
Institute (ETRI), Daejeon, Rep. of Korea in 2004 and is
currently a principal member of the research staff. His
current research interests include deep learning processors
for mobile hardware and software development kits.

Youngsu Kwon received his BS, MS,
and PhD degrees from the Korea
Advanced Institute of Science and
Technology (KAIST), Rep. of Korea in
1997, 1999, and 2004, respectively. He
was a Postdoctoral Associate at the
Microsystems Technology Laboratory
(MTL), Massachusetts Institute of

Technology from 2004 to 2005, designing 3-dimensional
FPGA. He has been with the AI SoC Research Department,
Electronics and Telecommunications Research Institute
(ETRI), Rep. of Korea since 2005. At ETRI, he is the
Director and Principal Researcher of the AI SoC Research
Department that is devoted to the design of the AI proces-
sor, AB. He has special interests in many-core architec-
ture, AI processor design, low-power architecture design,
computer-aided design, and algorithmic optimizations of
circuits and systems. He received the Presidential Prize
from the Korean Government in 2016, Official
Commendations from the Ministry of Science and ICT as
well as the Ministry of Industry in 2016, the Excellent
Researcher Award from the Korea Research Council in
2013, the Industrial Contributor Award from the Korean
Federation of SMEs in 2013, and medals from Samsung's
Thesis Prize in 1997 and 1999.

