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1  |   INTRODUCTION

Deep neural networks (DNNs) have recently become the 
most influential technology for diverse artificial-intelli-
gence (AI) applications [1]. The scope of AI applications 
that use DNNs has been extended to speech recognition 
[2], complex computer games [3], disease diagnosis [4], 
and autonomous vehicles [5], with considerable success 
in image classification, object recognition, and computer 
vision [6]. In addition, DNNs continue to evolve in com-
plexity beyond human accuracy. The remarkable abilities 
of DNNs include high computational capability and high 
energy (power) consumption along with the availability of 
massive data.

Research on DNNs advanced in the early phase by using 
general-purpose computing processors, such as central pro-
cessing units (CPUs) and graphics processing units (GPUs). 
However, domain-specific accelerators for DNNs are increas-
ingly required, as recent research show that DNN-specific ac-
celerators surpass CPUs and GPUs in terms of performance 
and energy efficiency [7–13].

Applications such as datacenters leverage more general 
high-performance DNN accelerators, which can efficiently 
process various NNs, while mobile and deeply embedded 
applications such as intelligent Internet-of-Things systems 
focus on highly specialized accelerators to achieve high en-
ergy efficiency [14]. The high-performance DNN accelera-
tor, which we target in this paper, involves programmability 
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to process various NNs, enables the efficient implementation 
of large memory and many processing elements (PEs), and 
provides a software stack such as a complier with highly opti-
mized algorithms to effectively operate the accelerator.

Accordingly, we take the first step toward presenting a 
memory-efficient architecture and automated optimization al-
gorithm for high-performance general DNN accelerators. Our 
accelerator implementation operates at 1 GHz using a simple 
data connection despite its large buffer size and operation unit. 
Furthermore, we increase the data reuse by leveraging flexible 
internal memory, programmable data control, and a memo-
ry-allocation algorithm, thereby maximizing the performance 
of our accelerator along with automating hardware scheduling.

The rest of this paper is organized as follows. In Section 2, 
we delineate neural networks (NNs) and the structure of DNN 
accelerators. We propose a flexible and programmable archi-
tecture for efficient DNN accelerators in Section 3, and auto-
mating optimization algorithms are introduced in Section 4. 
Next, in Section 5, we present the evaluation results, and we 
conclude this study in Section 6.

2  |   BACKGROUND

2.1  |  Neural networks

Various types of NNs have been developed depending on the 
applications. Among them, the most widely used NNs can 
be categorized as multi-layer perceptrons (MLPs), convolu-
tional neural networks (CNNs), and recurrent neural networks 
(RNNs). Notably, CNNs are utilized to extract a spatial feature 
in image-domain applications, such as object detection, while 
RNNs are well-suited for time-series prediction applications 
such as speech recognition and natural language processing. 
MLPs are useful to solve stochastic problems that involve ap-
proximation. However, for more complex problems, hybrid 
NNs such as convolutional RNNs [15] and a combination of 
multiple NNs [16] are also applied to improve the accuracy.

The NN architecture is composed of a directed acyclic 
graph (DAG) that comprises a stack of multiple types of lay-
ers, such as a convolutional layer (CONV), fully connected 
layer (FC), non-linear activation layer (ACTV), pooling lay-
ers (POOL), among others. FC and CONV layers generate 
the output vector (H(x)) by performing a multiply-accumu-
late (MAC) between the input vector (x) and weight matrix 
(W), followed by an element-wise addition (EW-ADD) of the 
bias vector (b) as follows:

where CONV treats two-dimensional (2D) feature maps (fmaps) 
with width (ie, Wi) and height (ie, Hi), as depicted in Figure 1, 
and FC handles scalars, for an element of weight matrix and 

input vector. ACTV applies non-linear operations, such as rec-
tified linear unit, sigmoid, and hyperbolic tangent, to the output 
of the CONV or FC layer. POOL, which is optionally applied 
after CONV, processes by selecting a maximum value or an av-
erage value of the values within the predetermined 2D area and 
reduces the sample number of fmaps. In addition to the widely 
used layers, the training performance can be enhanced using 
techniques such as normalization and regularization, which are 
processed via element-wise operations.

2.2  |  Structure of DNN accelerators

Domain-specific accelerators for DNN have been proposed 
to achieve higher processing performance and better energy 
efficiency than those achieved using conventional processors 
such as CPU and GPU. As depicted in Figure 2, the high-
level block diagram of a DNN accelerator comprises a large 
external memory (EM) such as DRAM, high-bandwidth in-
ternal buffer (IB), and computation engine that consists of an 
array of PEs. An EM is essential for large-scale applications 
such as DNNs, as the amount of activation data and weights 
of layers is large and deeper NNs increase both the amount of 
data and weight of the layers. However, DNN accelerators in-
corporate high-bandwidth IBs because of high-performance 

(1)H(x)=Wx+b.

F I G U R E  1   CONV Computation. Nik input fmaps of size 
Wi × Hi are convolved with Nik weights of size Wk × Hk using a 
sliding window. In addition, CONV generates an output fmap of size 
Wo × Ho. This process is repeated Mk times with different weights. 
Consequently, Mk output fmaps of size Wo × Ho are produced. The Wo 
or Ho is calculated using parameters such as padding or stride size

∗ =

…
…

F I G U R E  2   Architecture of the DNN accelerator
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requirements. In addition, data-reuse techniques that utilize 
IBs improve both energy efficiency and performance, as 
EM access requires energy consumption of a higher order 
than that required by on-chip buffers [9]. A PE array with 
high parallelism executes operations such as MAC to pro-
cess the NNs mentioned in Section 2.1. Another important 
microarchitecture for DNN accelerators is the network-on-
chip (NoC) design between IB/PEs and PEs. The NoC design 
with a dataflow style considerably affects the performance in 
terms of both throughput and latency.

2.3  |  Efficient DNN accelerators

The efficiency of DNN accelerators is evaluated on the basis 
of both cost (ie, area and power consumption) and perfor-
mance (ie, throughput and latency). IB structures that support 
flexible data layout improve the efficiency by maximizing 
the data reuse and minimizing the power consumption. Low-
complexity NoC structures reduce cost and support high 
bandwidths by implementing high frequencies. In addition, 
the design of a small PE decreases the total area of a PE array, 
as PE is replicated as required by the target operation per-
formance. Additionally, the programmable data access elimi-
nates a redundant data copy such as im2col-based CONV, 
thereby reducing memory consumption and the data band-
width required between EM and IB. Another crucial factor 
for performance is dataflow, which describes the manner of 
dispatching and fetching operands to PEs.

In addition, hardware-dependent optimization algorithms 
are indispensable along with an efficient hardware architec-
ture. The data-layout decision enhances the efficiency by 
maximizing the data reuse in IB or PE array, as IB and PE 
arrays can accommodate the total size of the activation data 
and weights for DNNs. Maximizing the data reuse signifi-
cantly affects both performance and cost, as data movement 
between IB and EM consumes considerable processing time 
and high power. Although the data reuse is maximized in IB 
by the efficient data-layout decision, data are still moved be-
tween IB and EM because IB is insufficient to store all the 
data for DNNs. Therefore, efficient scheduling increases the 
throughput by hiding the data-movement time. Finally, the 
DNN accelerator is easily leveraged in various applications 
by automating these algorithms.

3  |   ARCHITECTURE

We propose an architecture that includes the IB structure, 
dataflow path between IB and PEs, and dataflow control-
ler for memory-efficient high-performance DNN accelera-
tors. The architecture aims to operate at a high frequency 
with a large size of the PE array and IB for implementing 

high-performance processors. We design an architecture 
based on a short datapath to operate at a high frequency for 
high-performance accelerators. Additionally, the architecture 
based on the output-stationary dataflow, which reuses the 
output within a PE during a computation, is adopted to enable 
various high-performance operations via a technique such as 
fusing operations as well as an efficient MAC operation.

3.1  |  Buffer structure and dataflow

In Figure 3, we depict the efficient large-scale IB structure 
and the connection paths with a PE array which is a set of 
systolic-arrays [17] based computational cores. IB comprises 
a set of memory rows that are aligned with and arranged in 
each row of the PE array. IB rows are implemented with sin-
gle-port SRAMs, which is called the sub-block to reduce the 
chip area as shown in Figure 3. Only the datapath between 
the corresponding buffer and PE array rows are connected for 
input and output activations. Exceptionally, weights are fed 
from a buffer row to the first PE core of the corresponding 
PE array column as shown in Figure 3B. Each IB row stores 
the loaded input activations and weights from EM prior to 

F I G U R E  3   Proposed IB structure for DNN accelerators: (A) 
fmap dataflow including the diagonal path and (B) weight dataflow. 
The solid and dashed lines represent the input and output fmap, 
respectively, and the red line represents the diagonal path in (A). The 
dashed line in (B) represents the weight dataflow and is implemented 
via a feed-through way in our design
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performing a computation. When starting a computation, 
input activations in an IB row are fed to the first PE core 
of the corresponding PE array row, as depicted by the solid 
arrows in Figure  3A. Similarly, the weights in an IB row 
enter the first core of the corresponding PE array column, 
as depicted in Figure 3B. The input activations in the first 
core of the PE array row are horizontally transferred, and the 
weights in the first core of the PE array column flow verti-
cally until the data and weights arrive at the last core of the 
PE array row or column, respectively. The PE cores process 
operations for DNNs, by using systolic input and weight sup-
plies. Because this architecture supports the output-stationary 
dataflow, the necessary data are continuously supplied until 
the final output is calculated. For example, for convolution 
operations, whole 3D input tensor data and weights fed to 
PEs with the proposed short datapath and the output register 
within the PE core store the temporary and result data by an 
output-stationary architecture. After finishing a computation 
of a PE core, as depicted by the dashed lines of Figure 3A, the 
output is delivered from right to left in a row of the PE array 
in a systolic manner and eventually stored to the correspond-
ing IB row. The PE core includes an adder and a multiplier 
for computation such as MAC, element-wise operation, recti-
fied linear unit (ReLu), and even pooling, a few data regis-
ters for temporarily storing data or transferring data between 
PEs, and several multiplexers and various datapath between 
registers and arithmetic elements for the configuration of the 
target operation.

In addition to the basic dataflow using the row and column 
connection structure each for activation data and weights, the 
diagonal path for the input and output activation dataflow, 
which is denoted by the red lines, is introduced between an 
adjacent buffer and a PE row (notably, the diagonal path con-
nects a PE-array row, and the buffer row is located diagonally 
below the PE-array row) for efficient operations, especially 
for operations with high data-reuse rates such as CONV. The 
diagonal datapath prevents the input activation duplication in 
multiple buffer rows and rearranges the output activation be-
tween buffer rows, allowing for a padding sand kernel shape 
of the operation, which will be processed in the next layer. 
For example, as depicted in Figure 4, a Wi × 2 input fmap (ie, 
ifmap) can be assigned to a buffer row when processing the 
2D CONV of Wi × Hi ifmap by using three 3 × 3 kernels with 
a zero-padding size of 1. Notably, the 3 × 3 kernels are stored 
in separate sub-blocks to that for ifmap. To calculate the first 
output row, the I1–I6 input data are read from buffer row 0 
and fed to the first PE row by using the corresponding row 
path (ie, the black bold line in Figure 3A), while the diagonal 
path is used to feed the I7–I9 ifmap to the first PE array row. 
To access data, the addresses for the target input and weight 
data are generated cycle by cycle in synchronization. The 
padding and diagonal path area are also identified, and their 
special signals are made in the data-access controller (DAC), 

as will be described in Section 3.2. If the padding size of the 
next processed CONV is 1, the output addresses are calcu-
lated, allowing for the padding area. In addition, the diagonal 
write path is active when the second row of output fmap (ie, 
O2) is stored in the second buffer row from the first PE row. 
This proposed scheme eliminates the redundant data stored 
in the buffer and enables data reordering during the computa-
tion stage, without an additional data-reordering stage or data 
movement so that it can improve memory efficiency and the 
data-reuse rate. Each amount of three data components, that 
is, input, output activations, and weights, significantly varies 
depending on the NN structure and an IB row stores all the 
components that are simultaneously accessed during a com-
putation stage despite implementing with single-port SRAM. 
Therefore, determining the number of sub-blocks for a buf-
fer row is important for flexibility, concurrent accessibility, 
and the chip area. We note that the use of smaller buffers 

F I G U R E  4   Example of buffer allocation and dataflow: (A) 
example convolution parameters (Wi × Hi ifmap and three 3 × 3 
kernels), (B) buffer allocation of ifmap and weights, and ifmap's data 
flow, and (C) buffer allocation and dataflow of the output fmap
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increases the total chip area. We will evaluate the impact of 
the number of sub-blocks in Section. 5.

3.2  |  Data-access controller

To access (ie, read and write) a buffer row for the abovemen-
tioned three data components during a computation stage, the 
following three DACs are proposed for each of the three com-
ponents: DAC-I for input activations, DAC-W for weights, 
and DAC-O for output activations. DACs control the data-
flow by generating a sequence of read/write addresses every 
cycle. A DAC comprises a programmable N-dimensional 
nested-loop based address generator. The programmable 
parameters include a repeat count and an incremental offset 
for each loop dimension, as well as an initial address. The 
number of dimensions, which corresponds to the number 
of changed directions of the accessed data within a tensor, 
is decided by analyzing the accessed data order of various 
NNs. For example, for the operation that fuses a convolution 
layer and pooling layer (CONVPOOL), DAC-I adopts the 
seven-level nested-loop structure to support seven dataflow 
directions: width, height and channel directions of the kernel 
data, horizontal and vertical directions for pooling, and two 
sliding-window directions. The address of the accessed data 
at a single cycle is generated using Algorithm 1.

where addr0 denotes the initial address and ux and incx the total 
repeated count and index increments of each loop, respectively. 
The programmable DACs are designed only using adders and 
multiplexers instead of expensive multipliers, and the generated 
addresses are transferred in a systolic manner from the first 
to last IB row. The accessed data by the generated addresses 
are synchronized with the PE configuration signal for the tar-
get computation and fed to the PE array. Additionally, DAC-I 
and DAC-O contain the diagonal path control to access the IB 
row below and the padding control to process the padding area 
using the generated address and supplementary information, 
such as padding/stride sizes and indicators of which loop level 
represents which direction component.

Figure  5 depicts the architecture for a three-level ad-
dress generator. ix and ix_addr are set by zero and the ini-
tial address addr0, respectively, before operating DAC. 
The address of the accessed data in next time is generated 
in synchronization with the data valid signal (ie, light pur-
ple box). Since PEs perform the various operations that 
require different data components, the data valid signal 
supports the condition that the required and accessed data 
is synchronized with the PE configuration signals for a 
target operation. The blue boxes are the registers for pro-
grammability and the generated address is stored in the 
yellow box. The loop control block of Figure 5A controls 
the incremental state of the Do-loop in Algorithm 1 and 
generates the valid signals in the loop level that are col-
ored by the grey. The loop valid signals are transferred to 
the address generator block of Figure  5B and select the 
valid address.

F I G U R E  5   Architecture of 3-level nested Do-loop based address-
generator: (A) loop control block and (B) address generator block
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4  |   AUTOMATED OPTIMIZATION

The optimizations are described as the key technology that 
maximizes the efficiency of the DNN accelerator by using 
the proposed memory-efficient structure and dataflow-control 
scheme, in this section. First, the abovementioned three data 
components are allocated in a buffer row to efficiently exploit 
the flexible buffer. Second, the parameters are defined for op-
timal scheduling, which maximizes a throughput. Third, the 
automation technique for deciding the optimal data layout and 
scheduling is proposed to increase the performance of the pro-
posed accelerator for various NNs. Finally, fusing operations 
are introduced to improve the data-reuse rate by removing the 
processing time required for the data movement.

4.1  |  Optimization of buffer allocation

For the efficiency of the proposed IB and PE array archi-
tectures and data-access scheme, the optimization algorithm 
adopts three techniques including slicing and tiling for ac-
tivation, and flexibly allocating three data components in 
multiple buffer sub-blocks. In this section, we describe the 
buffer-allocation optimization for the CONVPOOL opera-
tion that deals with 3D tensors, as an example.

First, an input 3D tensor that contains a padding area is hori-
zontally sliced at the same height (ie, slice height), and a slice is 
allocated in a buffer row, as depicted in Figure 6 for the row-wise 
IB structure. The sliced and allocated input tensors are fed and 
exploited as an operand for parallel computing. Because of the 
row-wise datapath including the diagonal path, the slice height 
is decided by the kernel height, vertical kernel stride size, verti-
cal pooling size, and vertical pooling stride. Specifically, a slice 
height is decided to satisfy the following two conditions.

•	 The slice height is set as a multiple of (the vertical stride 

size of pooling × the stride vertical size of the convolution 
kernel).

•	 (slice height × 2) is greater than/equal to (kernel height–1).

The batch size can be used as an additional factor to de-
cide the slice height because one batch can be allocated to 
multiple buffers.

When the capacity of IB is insufficient to store the total 
data including input, output, and weight of one convolution 
layer, a tensor is vertically tiled. The tiled input tensor is 
loaded from EM to IB after slicing so that the buffer capacity 
is validated with the tensor piece size, which is determined 
by the combination of tiling and slicing. This procedure is re-
peated until the buffer row can accommodate a tensor piece. 
The output tensor is also stored in the buffer row after finish-
ing a computation in the PE array. If IB is sufficient to store 
input, output, and weights without tiling, the output is reused 
in IB for the next operation. Otherwise, the output tile is tem-
porarily stored in IB rows and loaded out to EM to secure the 
memory space for processing another tile. Unlike tensor data, 
the weights of a layer are tiled on the basis of the number of 
columns in the PE array (ie, Aw in Figure 6), as the weights 
are passed in column-wise. Assuming that the size of the PE 
array is Aw × Ah (ie, 4 × 4 in Figure 6) and that the number of 
weights for a layer is M, one weight tile includes the number 
of max (M, Aw) and the number of weight tiles is M∕A

w
.

Finally, an input slice, an output slice, and a weight tile 
are flexibly allocated in the sub-blocks of a buffer row, al-
lowing for simultaneous buffer access. During the computa-
tion phase, an input slice and a weight tile are concurrently 
read from a buffer row and transferred to the first core of 
the corresponding row and column, respectively, as two op-
erands. Therefore, the buffer sub-blocks for an input slice 
and a weight tile are separated to operate without latency for 
synchronization. This is because if sub-blocks for input and 
weights are integrated, the accelerator requires an additional 
processing time (latency) to synchronize between input and 
weight feedings. However, the sub-block separation for the 
input and output slices is optionally determined by compar-
ing the performance during the automated optimization. The 
separated sub-block allocation improves throughput while 
the integrated sub-block allocation increases the buffer utili-
zation by removing buffer fragmentation.

4.2  |  Scheduling of hardware operations

The scheduling of hardware operations is one of the most sig-
nificant optimization steps for performance maximization. The 
hardware operations are defined as input-loading (IL), weight-
loading (WL), computation (CT), and output-storing (OS) for 
scheduling. The performance of the four operations is first 
calculated by exploiting the results of the buffer allocation, 

F I G U R E  6   Example of fmap sliced by the slice height, buffer 
allocation, and dataflow in the architecture that comprises a 4 × 4 PE 
array and 4 buffer rows
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as each hardware operation time relies on the processed data 
size. With the calculated performance of each operation, search 
spaces are explored. The search spaces are determined using a 
combination of the following condition parameters.

Cond. 1. The capacity of weights for the overall NN.
Cond. 2. The availability of double buffering for each 

component.
Cond. 3. The separation/integration of input and output 

buffers.
Cond. 4. Input and output data reuse.
For example, the initial search space for each layer is set 

to 24 if only one data for every three data components are 
present. When the weights for the overall NN are acceptable 
in an IB with a spare buffer space for input and output acti-
vations, the number of search spaces is 23 (ie, 8), where input 
double buffering or not = 2 options, output double buffering 
or not = 2 options, and input and output buffers separation 
or integration = 2 options, thereby totaling to 2 × 2 × 2 = 8 
options. However, when IB is insufficient to store the overall 
weights, the number of search spaces is 24 (ie, 16) by adding 
a weight double-buffering parameter.

After setting the number of the initial search spaces to 
24, they are reduced by checking the input and output data 
reuse in IB between the processed layers, as the double buff-
ering parameter is removed if the data are reused in IB. The 
final search spaces are explored on the basis of a pre-defined 
scheduling model by using the dependency between hardware 
operations. In Figure 7, we depict an example of scheduling 
models, where the output and weight exploit double buffers. 
The separation and integration options of the input and output 
buffers indicate the different CT performance since simultane-
ous access is impossible. Therefore, the lighter purple boxes 
indicate a lower performance than those of the darker purple 
boxes due to the use of the integrated input and output buffer 
0. Although the separated buffer option consumes the shorter 
operation time when processing the same amount of data, the 
integrated buffer option can lead to whole performance im-
provement, especially for the target NN which processes large 
data, by increasing the buffer utilization.

4.3  |  Automating optimizations

Automating the optimization algorithms is necessary to 
apply various NNs to the designed DNN accelerator. The au-
tomation algorithm includes the parameterization of search 
spaces, the cost model, and a searching method. Specifically, 
a searching method allows for the number of the handled 
data for a target operation, the latency hiding technique, and 
the data-reuse methods. The automated optimization aims to 
maximize the data reuse in IB-level after optimizing the PE-
level data reuse in a prior stage such as fusing operations in 
Section 4.5. The number of the handled data is also decided 

during the PE-level data-reuse stage. The weight data-re-
use is searched by verifying the IB capacity for the whole 
weights for a target NN because weights are used regardless 
to test inputs. Since the latency hiding is realized by using 
double buffering, the search spaces include the availability 
of double buffering in each data component. The additional 
exploration space for our architecture is the separation pos-
sibility between input and output buffers for an efficient 
sub-block utilization. The buffer allocation search spaces in-
cluding tiling, slicing, IB-level data reuse between operations 
are combined with the pre-determined search spaces. During 
optimization, the automation algorithm validates the search 
spaces that are the combination of the optimization param-
eters for buffer allocation and the scheduling search spaces, 
following which it calculates the cost. The space with the best 
cost is decided as the final space by comparing the costs of all 
the available spaces with one another. We exploit the hard-
ware behavior modeling to compute the cost. The scheduling 
model is parameterized using the cost of four operations, that 
is, IL, WL, CT, and OS, and the cost is calculated based on 

F I G U R E  7   Scheduling example of a search space with double 
buffers for output and weight when two input tiles and two weight tiles 
are processed: (A) weight-loading priority and separated in/out buffers, 
(B) input-loading priority and separated in/out buffers, (C) weight-
loading priority and integrated in/out buffer, and (D) input-loading 
priority in/out buffer
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the hardware behavior modeling and the data size decided 
via buffer allocation. Therefore, the final cost for a condi-
tion is yielded with the hardware model and the scheduling 
model. A summary of the automated optimization process 
is presented in Algorithm 2. Additionally, the cost of each 
hardware operation is weighted to allow for variations in the 
hardware implementations. The weights can be updated to 
apply the practical hardware operation model via an experi-
ment in the real environment.

where Ni, No, and Nw denote the number of the processed 
data for input, output, and weight components, respectively, 
and SP represents whether the buffer structure for input and 
output is unified or separated. The term DB indicates whether 
double buffering is used, and its value is set to 1 if the data 
are reused between the processed operations.

In addition to Algorithm 2, the batch size can be com-
bined with search spaces during exploratory buffer allocation 
as a condition since the amount of handled data is different by 
the batch size, and impacts on the PE array utilization and IB-
level data reuse. Therefore, batch size searching can be also 
added to the automated optimization. We have elucidated the 
optimization results in Section 5.3, including the batch size 
searching algorithm.

4.4  |  Fusing operations

The fusing operations of DAGs are one of the essential 
factors to improve the efficiency of DNN accelerators, 
as fused operations are processed without an additional 
data movement between the PE array and IB or between 
IB and EM. In this section, we describe the processing 
of the fusing operation based on the proposed archi-
tecture. We previously discussed the data control for 
CONVPOOL, which fuses CONV and POOL, as an exam-
ple in Section 3.2. Therefore, we will discuss the fusing 
of CONV and the residual connection (RES), also called 
shortcut or skip connection, which is used in ResNet [18] 
as another example.

ResNet, which is one of the widely used NNs, intro-
duces a RES to build the residual blocks and identity 
blocks to increase the image-recognition accuracy, as de-
picted in Figure 8. RES operates by adding output activa-
tions from two layers in an element-wise manner. Because 
our architecture uses output-stationary dataflow, the out-
put of CONV3 is stored in a register file of PEs after the 
convolution operation, and then x in IB is fed to PEs for 
EW-ADD. For the processing of the fused CONV and 
RES (CONVRES), x can be loaded out to EM or stored 
in IB after processing CONV1 according to the IB state. 
Therefore, the parameters for input x of CONVRES are 

F I G U R E  8   Structure of the basic blocks for ResNet: (A) residual 
block and (B) identity block. The red line denotes the residual (skip or 
shortcut) connection
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inserted in buffer allocation and scheduling. Specifically, 
input x is first allocated in IB and then loaded from EM to 
IB for CONV1. After completing the CONV1 operation, 
a check is made to determine if the IB space for x is still 
sufficient to process CONV2 without performance degra-
dation during the optimization of the buffer allocation. If 
the space is sufficient, the buffer for the three components 
is allocated with the remaining buffer space, except for the 
x space for CONV3. Otherwise, four data components in-
cluding x are used for the buffer allocation. For searching 
the scheduling spaces for CONV3, the input component for 
x is added as a parameter. When x is stored in the IB during 
the processing of CONV2, the data-reuse parameter for x is 
set, and because x is not moved from EM to IB (ie, x data 
reuse), double buffering for x is not used.

5  |   EVALUATION

We evaluate the proposed architecture and optimizations in 
this section. The experimental setup is first described and 
then the experimental results are presented.

5.1  |  Experimental environment

We have presented the accelerator model on the basis of 
the architecture presented in [24] as the baseline. However, 
the baseline architecture was modified according to the 
proposed buffer, datapath, and data control in Section. 3. 
In addition, we designed a simulator engine to evaluate 
the configurable architecture. The configurable architec-
tural parameters are as follows: the PE array size, buffer 
sub-block size, number of sub-blocks for a buffer row, and 
diagonal-path availability. For the complete accelerator 
system, we implemented the system model using DDR4 
memory for EM and 256-bit-width advanced extensible in-
terface system bus for the data movement between EM and 
IB. For an EM-access module, two read channels and one 
write channel, which are responsible for the input, output, 

and weight components, respectively, were additionally 
designed for the experiments.

We evaluate the proposed architecture and optimization al-
gorithms using the popular CNNs summarized in Table 1. This 
is because we target the high-performance accelerator imple-
mentation and CNN process operations with higher complexity, 
resulting in more complicated dataflow control and a larger acti-
vation and weight size than those of MLPs and RNNs. Notably, 
AlexNet [19], VGGNet [20], and ResNet [18] are well-known 
NNs that have won in ImageNet ILSVRC [25] for image classi-
fication. Yolov2 [21] and yolov3 [22] were developed to detect 
objects in real-time so that they could be used in many practical 
applications. SqueezeNet [23] was designed for lightweight ap-
plications with small parameters. The test NNs have different 
layer structures, memory footprints, and number of operations.

5.2  |  Hardware-configuration comparison

In Figure 9, we compare several NNs based on the speedup 
of the processing time for various hardware architecture con-
figuration factors. All the optimization algorithms mentioned 
in Section 4 are applied to ensure a fair comparison. The base-
line architecture is configured using a 128 × 128 PE array and 
256 KB of a memory row with 8 sub-blocks. Each configura-
tion of the baseline is changed while maintaining other con-
figurations, and the hardware performance with the changed 
configuration is calculated and compared with the baseline 
configuration. The speedup for comparison between the base-
line and the changed configurations is computed as follows:

where the processing time for the target NN is estimated by 
the simulator. Compared with SqueezeNet, the performance 
of VGG-16 is dramatically affected by the PE array size and 
buffer size because of the large data size, including weights 
and fmap. However, the number of sub-blocks is less impactful 
because the optimization compensates for the degradation by 

(2)Speedup=
Processing Timebaseline

Processing Timechanged

T A B L E  1   Layer structure and parameters of the evaluated NNs

NNs CONVs FCs POOLs RESs
Total 
weights

Max. 
weightsa 

Max. 
fmapsa,b 

# of 
MACs

Alexnet [19] 5 3 6 N/A 62.4 M 37.8 M 0.2 M 724 M

VGG-16 [20] 13 3 5 N/A 138.4 M 102 M 4 M 15.3 B

ResNet-50 [18] 50 N/A 2 16 23.8 M 2.4 M 2.1 M 2.5 B

Yolov2-416 [21] 23 N/A 5 N/A 50.9 M 11.8 M 6 M 14.7 B

Yolov3-416 [22] 75 N/A N/A 23 61.9 M 4.7 M 8.3 M 5.1 B

SqueezeNet [23] 26 N/A 3 N/A 1.2 M 0.5 M 1.3 M 1.7 B
aMax. Weights and fmaps are the maximum required memory footprint for weights and fmaps data, respectively, when processing layer by layer. 
bThe activations contain both input and output fmaps of a layer. 
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decreasing the number of sub-blocks. On the other hand, the 
running time for the optimization with a small number of sub-
blocks is increased because of the inferior hardware condition. 
The diagonal write path improves the performance by 1.44× on 

average, as it decreases the data movement between IB and EM 
to rearrange the data. The performance of SqueezeNet is main-
tained in almost all the configurations, as it is too small to affect 

F I G U R E  9   Performance comparison on the basis of hardware configurations: (A) buffer size, (B) PE array size, (C) number of sub-blocks, 
and (D) use of the diagonal write path
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F I G U R E  1 0   Efficiency of automated optimization algorithm
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the hardware configurations that provide high performance. 
Moreover, SqueezeNet has been fully optimized using the opti-
mization algorithm by maximizing data reuse in IB.

5.3  |  Optimization performance

The efficiency of the optimization algorithms is evaluated 
by comparing their performances with that of the baseline. 
To that end, we exploited the baseline hardware mentioned 
in Section 5.2. The baseline optimization is defined using 
single buffering for all the data components and unified in/
out buffer. For the unified buffer, we generated the special 
PE array control command to prevent the SRAM read and 
write conflict by using a delay. The unified buffer option 
degrades the performance of the PE operation because of 
the delay cycles while increasing the data reuse in IB via 
reduced fragmentation. Therefore, the automated optimi-
zation system enhances the performance by analyzing the 
layer parameters of NN and searching the best optimiza-
tion condition. The speedup comparison between the base-
line and the optimized algorithms is depicted in Figure 10. 
Consequently, the performance is considerably improved 
in the case of the following automated optimization algo-
rithms: buffer-allocation algorithm (including slicing, til-
ing, and assigning flexible buffer) and scheduling-search 
algorithm. Expectedly, the automated optimization algo-
rithm significantly improves the performance.

5.4  |  Analysis of fusing operations

To analyze the efficiency of the fusing operations, we consider 
CONVRES of Yolov3 and ResNet as the test layer. Because 
the evaluated NNs include 23 and 16 RES operations, respec-
tively, as presented in Table 1, the performance improvement 
due to the fusing operations significantly affects the overall 
performance. In Figure 11, we depict the performance com-
parison between the fused (ie, CONVRES) operation and 
separate operations (ie, CONV and RES, respectively). The 
speedups of ResNet and Yolov3 are 3× and 1.4×, respectively, 
as the fusing technique minimizes the data movement between 
IB and EM or between PEs and IB. Specifically, our output-
stationary based architecture is considerably effective when 
fusing and processing the operations without weights such as 
RES and POOL. In conclusion, high-performance accelerators 
involve operation-fusing optimization.

5.5  |  Hardware implementation

The designed accelerator was synthesized using the Synopsys 
Design Compiler with the TSMC 28-nm library, and it achieved 

an operating frequency of 1 GHz. The layout of the synthesized 
architecture with a 128 × 128 PE array is depicted in Figure 12A. 
A PE is designed for float16 operators and 32 TFLOPS is sup-
ported. The IB comprises 128 rows to fit to a PE array size, and 
a buffer row is divided into 8 sub-blocks where a buffer sub-
block is 32 KB. Consequently, the accelerator is implemented 
using a 32 MB on-chip SRAM and 16 384 PEs. The chip-area 
estimate is 494 mm2 from the layout and the area breakdown of 
the synthesized accelerator is depicted in Figure 12B. NoC ac-
counts for only 0.23%, as we implement the policy that NoC is 
connected only between adjacent IB rows and PEs and between 
PEs and PEs. The miscellaneous includes the data-movement-
management unit between IB and EM, DAC, and the main con-
trol logics. Therefore, the high-performance accelerator, which 
can operate at high frequency, can be achieved using a small 
programmable dataflow and data-movement controller, when 
the PE-array and buffer sizes are largely increased because of 
the systolic-array-based architecture and simple NoC struc-
ture. We additionally estimate the power consumption of the 

F I G U R E  1 2   Synthesized result of the proposed DNN 
accelerator: (A) layout of the designed DNN accelerator and (B) area 
breakdown of the synthesized architecture
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synthesized accelerator using Synopsys Prime Time. The static 
power dissipates by approximately 15 W and a 12.5 W dynamic 
power consumption is estimated by applying a 5% toggle rate.

6  |   CONCLUSIONS

We presented a flexible buffer structure, effective dataflow 
for fusing operations, and programmable data-access con-
trol for high-performance DNN accelerators. Based on the 
proposed architecture, we automated the optimization algo-
rithms to maximize performance. The parameters and search 
spaces were defined, and the automation algorithm based on 
the exact hardware model was proposed to efficiently oper-
ate the hardware. These combined techniques achieved the 
implementation of a high-performance accelerator with a 
large PE array and IB operating at a high frequency, thereby 
providing the convenience for processing various NNs. In 
addition, the results of the fusing operations showed the pos-
sibility of tighter optimizations. However, automating the 
operation fusion remains to be explored in the future.
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