• Title/Summary/Keyword: Network based robot

Search Result 564, Processing Time 0.035 seconds

Online Dynamic Modeling of Ubiquitous Sensor based Embedded Robot Systems using Kalman Filter Algorithm (칼만 필터 알고리즘을 이용한 유비쿼터스 센서 기반 임베디드 로봇시스템의 온라인 동적 모델링)

  • Cho, Hyun-Cheol;Lee, Jin-Woo;Lee, Young-Jin;Lee, Kwon-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.779-784
    • /
    • 2008
  • This paper presents Kalman filter based system modeling algorithm for autonomous robot systems. State of the robot system is measured using embedded sensor systems and then carried to a host computer via ubiquitous sensor network (USN). We settle a linear state-space motion equation for unknown robot system dynamics and modify a popular Kalman filter algorithm in deriving suitable parameter estimation mechanism. To represent time-delay nature due to network media in system modeling, we construct an augmented state-space model which is mainly composed of original state and estimated parameter vectors. We conduct real-time experiment to test our proposed estimation algorithm where speed state of the constructed robot is used as system observation.

A Study on an Intelligent Control of Manufacturing with Dual Arm Robot Based on Neural Network for Smart Factory Implementation (스마트팩토리 실현을 위한 뉴럴네트워크 기반 이중 아암을 갖는 제조용 로봇의 지능제어에 관한 연구)

  • Jung, Kum Jun;Kim, Dong Ho;Kim, Hee Jin;Jang, Gi Wong;Han, Sung Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.3
    • /
    • pp.351-361
    • /
    • 2021
  • This study proposes an intelligent control of manufacturing robot with dual arm based on neural network for smart factory implementation. In the control method of robot system, the perspectron structure of single layer based on neural network is useful for simple computation. However, the limitations of computation are emerging in areas that require complex computations. To overcome limitation of complex parameters computation a new intelligent control technology is proposed in this study. The performance is illustrated by simulation and experiments for manufacturing robot dual arm robot with eight axes.

Development of a New Moving Obstacle Avoidance Algorithm using a Delay-Time Compensation for a Network-based Autonomous Mobile Robot (네트워크 기반 자율 이동 로봇을 위한 시간지연 보상을 통한 새로운 동적 장애물 회피 알고리즘 개발)

  • Kim, Dong-Sun;Oh, Se-Kwon;Kim, Dae-Won
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1916-1917
    • /
    • 2011
  • A development of a new moving obstacle avoidance algorithm using a delay-time Compensation for a network-based autonomous mobile robot is proposed in this paper. The moving obstacle avoidance algorithm is based on a Kalman filter through moving obstacle estimation and a Bezier curve for path generation. And, the network-based mobile robot, that is a unified system composed of distributed environmental sensors, mobile actuators, and controller, is compensated by a network delay compensation algorithm for degradation performance by network delay. The network delay compensation method by a sensor fusion using the Kalman filter is proposed for the localization of the robot to compensate both the delay of readings of an odometry and the delay of reading of environmental sensors. Through some simulation tests, the performance enhancement of the proposed algorithm in the viewpoint of efficient path generation and accurate goal point is shown here.

  • PDF

Control Network Design for Multi Body Robot Based on IEEE1394 (IEEE1394를 이용한 다관절 로봇의 분산 제어 네트워크 개발)

  • Cho, Jung San;Sung, Young-Whee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.2 no.4
    • /
    • pp.221-226
    • /
    • 2007
  • This paper propose a control network system based on IEEE1394 for a multi body robot control. The IEEE1394 has the characteristic of high speed(400Mbps), real-time, stability and plug&play. And IEEE1394 also supports freeform daisy chaining, branching and hot plugging, which reduce cabling complexity and make a system simple. Especially, multi host and broad casting support network data sharing method which is suitable for control network for multi body robot. Through experiment, we show that the proposed control network can interface 48 joints (BLDC motors, gears, and encoders) and four 6-axis force/torque sensors with 4Khz communication bandwidth, which is adequate for a multi body robot.

  • PDF

Collaborative Control Method of Underwater, Surface and Aerial Robots Based on Sensor Network (센서네트워크 기반의 수중, 수상 및 공중 로봇의 협력제어 기법)

  • Man, Dong-Woo;Ki, Hyeon-Seung;Kim, Hyun-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.135-141
    • /
    • 2016
  • Recently, the needs for the development and application of marine robots are increasing as marine accidents occur frequently. However, it is very difficult to acquire the information by utilizing marine robots in the marine environment. Therefore, the needs for the researches of sensor networks which are composed of underwater, surface and aerial robots are increasing in order to acquire the information effectively as the information from heterogeneous robots has less limitation in terms of coverage and connectivity. Although various researches of the sensor network which is based on marine robots have been executed, all of the underwater, surface and aerial robots have not yet been considered in the sensor network. To solve this problem, a collaborative control method based on the acoustic information and image by the sonars of the underwater robot, the acoustic information by the sonar of the surface robot and the optical image by the camera of the static-floating aerial robot is proposed. To verify the performance of the proposed method, the collaborative control of a MUR(Micro Underwater Robot) with an OAS(Obstacle Avoidance Sonar) and a SSS(Side Scan Sonar), a MSR(Micro Surface Robot) with an OAS and a BMAR(Balloon-based Micro Aerial Robot) with a camera are executed. The test results show the possibility of real applications and the need for additional studies.

Development Status and Industrial Requirements for Network-based Robots (네트워크 기반 로봇의 개발 현황 및 업체 요구 사항)

  • Park, Kwang-Hyun;Lee, Kwan-Woo;Choi, Byoung-Wook;Cho, Heung-Jae;NamGoong, Hwe-Moon;Park, Jin-Woo;Oh, Sang-Rok;Suh, Il-Hong
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.2
    • /
    • pp.196-204
    • /
    • 2007
  • In this paper, we are looking for requirements of software, hardware and application for use in network-based robots and also directions in building standardization and research activities by reviewing technical status of the robot industries developing robots. The questions are including awareness of RUPI(Robot Unifies Platform Initiative) activities, target market and applications, hardware specifications, software development technologies, and HRI(Human Robot Interaction). The RUPI committee creates standard and drives implementation software for network-based robots through industrial requirements as like of the results. Many robots have been developed and launched services based on RUPI 1.0 standards. Based on this achievement we are expanding RUPI standard to include thin and thick client robots. The results also show that which one is important and urgent technology in the sense of industrial robotic business.

  • PDF

Implementation of Network-based Robot System to Guide a way (길안내를 위한 네트워크 기반 로봇 시스템 구현)

  • Kim, Hyung-Sun;Lee, Jun-Yeon;Lim, Jae-Hyun
    • Journal of Internet Computing and Services
    • /
    • v.10 no.5
    • /
    • pp.117-125
    • /
    • 2009
  • Early in 21st century, researches about intelligent service robot that provide various services for a human out of the industrial robot only has simple pattern repetition. It concentrates in the research regarding the URC(Ubiquitous Robotic Companion) robot which connects the network in the intelligent service. This paper proposes the robot system based on network to guide a way. The robot has made by lego brick and used ultrasonic sensor, rotation sensor and RFID tag to recognize external environment. Also, it includes a PDA to process the data between robot and server. The network server transmits information to robot controller by bluetooth and it controls the course movement and evasion of the robot. In this research, the robot system based on network to guide a way is easy to expand service and is able to process a data in real time due to data processing in the server as a part of intelligent robot. And it can reduce the cost to build a robot thank to use cheaper sensor equipment.

  • PDF

Development of Buoy-based Autonomous Surface Robot-kit (부이기반 자율형 수상로봇키트 개발)

  • Kim, Hyun-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.249-254
    • /
    • 2015
  • Buoys are widely used in marine areas because they can mark positions and simultaneously acquire and exchange underwater, surface, and airborne information. Recently, the need for controlling and optimizing a buoy's position and attitude has been raised to achieve successful communication in a heterogeneous collaborative network composed of an underwater robot, a surface robot, and an airborne robot. A buoy in the form of a marine robot would be ideal to address this issue, as it can serve as a moving node of the communication network. Therefore, a buoy-based autonomous surface robot-kit with the abilities of sonar-based avoidance, dynamic position control, and static attitude control was developed and is discussed in this paper. The test and evaluation results of this kit show the possibility of real-world applications and the need for additional studies.

A Design and Implementation of A Robot Client Middleware for Network-based Intelligent Robot based on Service-Oriented (지능형 네트워크 로봇을 위한 서비스 지향적인 로봇 클라이언트 미들웨어 설계와 구현)

  • Kwak, Dong-Gyu;Choi, Jae-Young
    • The KIPS Transactions:PartA
    • /
    • v.19A no.1
    • /
    • pp.1-8
    • /
    • 2012
  • Network-based intelligent robot is connected with network system, provides interactions with humans, and carries out its own roles on ubiquitous computing environments. URC (Ubiquitous Robot Companion) robot has been proposed to develop network-based robot by applying distributed computing techniques. On URC robot, it is possible to save the computing power of robot client by environments, has been proposed to develop robot software using service-oriented architecture on server-client computing environments. The SOMAR client robot consists of two layers - device service layer and robot service layer. The device service controls physical devices, and the robot service abstracts robot's services, which are newly defined and generated by combining many device services. RSEL (Robot Service Executing Language) is defined in this paper to represent relations and connections between device services and robot services. A RESL document, including robot services by combining several device services, is translated to a programming language for robot client system using RSEL translator, then the translated source program is compiled and uploaded to robot client system with RPC (Remote Procedure Call) command. A SOMAR client system is easy to be applied to embedded systems of host/target architecture. Moreover it is possible to produce a light-weight URC client robot by reducing workload of RSEL processing engine.

Gain Scheduler Control for Networked Mobile Robot (네트워크 기반 이동로봇에 대한 이득 스케줄러 제어)

  • Yun, Sang-Seok;Park, Kyi-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.315-318
    • /
    • 2005
  • This paper characterizes the performance for a remote path tracking control of the mobile robot in IP network viamiddleware. The middleware is used to alleviate the effect of the delay time on a mobile robot path tracking in Network-Based Control environment. The middleware also can be implemented in a modular structure. Thus, a controller upgrade or modification for other types of network protocols or different control objectives can be achieved easily. A case study on a mobile robot path-tracking with IP network delays is described. The effectiveness of the proposed approach is verified by experimental results.

  • PDF