• Title/Summary/Keyword: Network Bonding

Search Result 134, Processing Time 0.021 seconds

Chip Pin Parasitic Extraction by Using TDR and NA (TDR 및 NA를 이용한 Chip Pin Parasitic 추출)

  • 이현배;박홍준
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.899-902
    • /
    • 2003
  • Chip Pin Parasitic은 실제 Chip Pad에서부터 Bonding Wire를 통한 Package Lead Frame까지를 의미한다. 여기서, Lead Frame 및 Bonding Wire에서 Inductance 및 작은 저항이 보이고, Chip Pad에서의 Capacitance, 그리고 Pad 부터 Ground까지의 Return Path에서 발생하는 저항이 보인다. 이들을 모두 합하면 L, R, C의 Series로 나타낼 수 있다. 본 논문에서는 이런 Chip Pin Parasitic을 추출 하기 위해서 TDR(Time Domain Reflectometer)과 NA(Network Analyzer)를 사용하였는데, TDR의 경우 PCB를 제작하여 Chip을 Board위에 붙인 후 Time Domain에서 측정 하였고 NA의 경우 Pico Probe를 이용하여 Chip pin에 직접 Probing해서 Smith Chart를 통하여 Extraction 값을 추출했다. 이 경우, NA를 이용한 측정이 좀 더 정확한 Parasitic 값을 추출할 수 있으리라 예상되겠지만, 실제로 Chip이 구동하기 위해서는 Board위에 있을 때의 상황도 고려해야 하기 때문에 TDR 추출 값과 NA 추출 값을 모두 비교하였다.

  • PDF

Synthesis and Structural Analysis of the Diaquabis(ethylenediamine)nickel(II) Bis(p-toluenesulfonate) Monohydrate (Diaquabis(ethylenediamine)nickel(II) Bis(p-toluenesulfonate) Monohydrate 층상 화합물의 합성과 구조 분석)

  • Kim, Chong-Hyeak;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.317-320
    • /
    • 2002
  • The layer structure of the title compound, $[Ni(en)_2(H_2O)_2](CH_3C_6H_4SO_3)_2(H_2O)$ (en = ethylenediamine), consists of discrete cations, anions, and solvate water molecules linked by a hydrogen bonding network. The central Ni atom of the cation layer has a slightly distorted octahedral coordination geometry with the ethylenediamine ligands functioning as a N,N'-bidentate and the water ligands bonding through oxygen in a trans arrangement. The p-toluenesulfonate of the anion layer has an alternate sulfonate group directed toward opposite side of the cation layer. This layer structure is stabilized by a hydrogen bond involving the O atoms of the sulfonate, the water ligand, solvate water molecule, and the N atoms of the ethylenediamine.

Interfaces Between Rubber and Metallic or Textile Tire Cords

  • Ooij Wim J. Van;Luo Shijian;Jayaseelan Senthil K,
    • Elastomers and Composites
    • /
    • v.34 no.4
    • /
    • pp.299-314
    • /
    • 1999
  • Bonding metal and textile components to rubber has always posed a problem. In this paper, an attempt had been made to modify textile and metal surfaces for bonding with rubber. The metal surfaces were modified using silane coupling agents and textile fibers were modified using plasma polymerization techniques. Some results on adhesion of metals to a range of sulfur-cured rubber compounds using a combination of organofunctional silanes are given here. The treatment was not only effective for high-sulfur compounds but also for low-sulfur com pounds as used in engine mounts and even for some semi-EV compounds. Coatings of plasmapolymerized pyrrole or acetylene were deposited on aramid and polyester tire cords. Standard pull-out force adhesion measurements were used to determine adhesion of tire cords to rubber compounds. The plasma coatings were characterized by various techniques and the performance results are explained in an interpenetrating network model.

  • PDF

The Crystal and Molecular Structures of Sulfametrole

  • Koo Chung Hoe;Chung Yong Je;Shin Hyun So;Suh Jung Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.3 no.1
    • /
    • pp.9-13
    • /
    • 1982
  • Sulfametrole, $C_9H_{10}N_4O_3S_2$, crystallizes in the monoclinic system, space group $P2_1/n$ , with a = 8.145(2), b = 16.505(4), c = 9.637(1)${\AA},{\beta}=103.72(1)^{\circ},D_m=1.52gcm^{-3}$,Z=4.Intensities for 3594(2143 observed) unique reflections were measured on a four-circle diffractometer with Mo $K{\alpha}$ radiation $({\lambda}=0.71069{\AA})$. The structure was solved by direct method and refined by full-matrix least squares to a final R of 0.070. The geometrical features of the thiadiazole ring indicate some ${pi}$-electron delocalization inside the ring. The least squares planes defined by the benzene and thiadiazole rings are nearly perpendicular to each other(dihedral angle; $93.9^{\circ}$ ). All the potential hydrogen-bond donor atoms in the molecule, N(1) and N(2), are included in the hydrogen bonding. The molecules through hydrogen bonding form three dimensional network.

Framing North Korea on Twitter: Is Network Strength Related to Sentiment?

  • Kang, Seok
    • Journal of Contemporary Eastern Asia
    • /
    • v.20 no.2
    • /
    • pp.108-128
    • /
    • 2021
  • Research on the news coverage of North Korea has been paying less attention to social media platforms than to legacy media. An increasing number of social media users post, retweet, share, interpret, and set agendas on North Korea. The accessibility of international users and North Korea's publicity purposes make social media a venue for expression, news diversity, and framing about the nation. This study examined the sentiment of Twitter posts on North Korea from a framing perspective and the relationship between network strengths and sentiment from a social network perspective. Data were collected using two tools: Jupyter Notebook with Python 3.6 for preliminary analysis and NodeXL for main analysis. A total of 11,957 tweets, 10,000 of which were collected using Python and 1,957 tweets using NodeXL, about North Korea between June 20-21, 2020 were collected. Results demonstrated that there was more negative sentiment than positive sentiment about North Korea in the sampled Twitter posts. Some users belonging to small network sizes reached out to others on Twitter to build networks and spread positive information about North Korea. Influential users tended to be impartial to sentiment about North Korea, while some Twitter users with a small network exhibited high percentages of positive words about North Korea. Overall, marginalized populations with network bonding were more likely to express positive sentiment about North Korea than were influencers at the center of networks.

Vapor Permeation Separation of MTBE-Methanol Mixtures Using Cross-linked PVA Membranes (가교된 PVA 막을 이용한 MTBE/methanol 혼합물의 증기투과(Vapor Permeation)분리)

  • 김연국;임지원
    • Membrane Journal
    • /
    • v.10 no.3
    • /
    • pp.148-154
    • /
    • 2000
  • Poly(vinyl alcohol)(PVA)/sulfur-siccinic acid(SSA) membrane performances have been studied for the vapor permeation separation of methyl tort-butyl ether(MTBE)/methanol mixtures with varying operation temperatures, amount of cross-linking agents, and feed compositions. 1'here are two factors, the membrane network and the hydrogen bonding, in the swelling measurements of PVA/SSA membranes. These two factors act interdependently on the membrane swelling. The sulfuric acid group in SSA took an important role in the membrane performance. The cross-linking effect might be more dominant than the hydrogen bonding effect due to the sulfuric acid group at 7% SSA membrane. Hydrogen bonding effect was more important for 5% SSA membrane. In vapor permeation, density or concentration of methanol in vapor feed is lower than that of methanol in liquid feed, as a result, the hydrogen bonding portion between the solvent and the hydroxyl group in PVA is reduced in vapor permeation. In this case, the 7% SSA membrane shows the highest separation factor of 2187 with the flux of 4.84g/$m^2$hr for MTBE/methanol=80/20 mixtures at 3$0^{\circ}C$.

  • PDF

Comparison of Pervaporation and Vapor Permeation Separation Processes for MTBE-methanol System

  • Kim, Youn-Kook;Lee, Keun-Bok;Rhim, Ji-Won
    • Korean Membrane Journal
    • /
    • v.2 no.1
    • /
    • pp.36-47
    • /
    • 2000
  • This paper deals with the separation of MTBE-methanol mixtures using crosslinked Poly(vinyl alcohol)(PVA) membranes with sulfur-succinic acid(SSA) as a crosslinking agent by pervaporation and vapor permeation technique. The operating temperatures, methanol concentration in feed mixtures, and SSA concentrations in PVA membranes were varied to investigate the separation performance of PVA/SSA membranes and the optimum separation characteristics by pervaporation and vapor permeation. And also, for PVA/SSA membranes, the swelling measurements were carried out to study the transport phenomena. The swelling measurements were carried out for pure MTBE and methanol, and MTBE/methanol=90/10, 80/20 mixtures using PVA/SSA membranes with varying SSA compositions. There are two factors of the membrane network and the hydrogen bonding. In pervaporation separation was also carried out for MTBE/methanol=90/10, 80/20 mixtures at various temperatures. The sulfuric acid group in SSA took an important role in the membrane performance. The crosslinking effect might be over the hydrogen bonding effect due to the sulfuric acid group at 3 and 5% SSA membranes, and this two factors act vice versa on 7% SSA membrane. In this case, the 5% SSA membrane shows the highest separation factor of 2,095 with the flux of 12.79g/㎡$.$hr for MTBE/methanol=80/20 mixtures at 30$^{\circ}C$ which this mixtures show near the azeotopic composition. Compared to pervaporation, vapor permeation showed less flux and similar separation factor. In this case, the flux decreased significantly because of compact structure and the effect of hydrogen bonding. In vapor permeation, density or concentration of methanol in vaporous feed is lower than that of methanol in liquid feed, as a result, the hydrogen bonding portion between the solvent and the hydroxyl group in PVA is reduced in vapor permeation. In this case, the 7% SSA membranes shows the highest separation factor of 2,187 with the flux of 4.84g/㎡$.$hr for MTBE/methanol=80/20 mixtures at 30$^{\circ}C$.

  • PDF

Comparison of Pervaporation and Vapor Permeation Separation Processes for MTBE-methanol System

  • 김연국;이근복;임지원
    • Membrane Journal
    • /
    • v.2 no.1
    • /
    • pp.36-36
    • /
    • 1992
  • This paper deals with the separation of MTBE-methanol mixtures using crosslinked Poly(vinyl alcohol)(PVA) membranes with sulfur-succinic acid(SSA) as a crosslinking agent by pervaporation and vapor permeation technique. The operating temperatures, methanol concentration in feed mixtures, and SSA concentrations in PVA membranes were varied to investigate the separation performance of PVA/SSA membranes and the optimum separation characteristics by pervaporation and vapor permeation. And also, for PVA/SSA membranes, the swelling measurements were carried out to study the transport phenomena. The swelling measurements were carried out for pure MTBE and methanol, and MTBE/methanol=90/10, 80/20 mixtures using PVA/SSA membranes with varying SSA compositions. There are two factors of the membrane network and the hydrogen bonding. In pervaporation separation was also carried out for MTBE/methanol=90/10, 80/20 mixtures at various temperatures. The sulfuric acid group in SSA took an important role in the membrane performance. The crosslinking effect might be over the hydrogen bonding effect due to the sulfuric acid group at 3 and 5% SSA membranes, and this two factors act vice versa on 7% SSA membrane. In this case, the 5% SSA membrane shows the highest separation factor of 2,095 with the flux of 12.79g/㎡·hr for MTBE/methanol=80/20 mixtures at 30℃ which this mixtures show near the azeotopic composition. Compared to pervaporation, vapor permeation showed less flux and similar separation factor. In this case, the flux decreased significantly because of compact structure and the effect of hydrogen bonding. In vapor permeation, density or concentration of methanol in vaporous feed is lower than that of methanol in liquid feed, as a result, the hydrogen bonding portion between the solvent and the hydroxyl group in PVA is reduced in vapor permeation. In this case, the 7% SSA membranes shows the highest separation factor of 2,187 with the flux of 4.84g/㎡·hr for MTBE/methanol=80/20 mixtures at 30℃.

A Study of Convergence Modem Design for Giga Internet Service over CATV Network (CATV 망에서의 기가 인터넷 서비스를 위한 융복합 모뎀 설계에 관한 연구)

  • Park, Yong-Seo;Lee, Jae-Kyoung
    • Journal of Digital Convergence
    • /
    • v.14 no.10
    • /
    • pp.261-269
    • /
    • 2016
  • This paper aims to propose a novel technology of network convergence to provide ultra high speed internet services over CATV networks, by which a CMC(cable modem concentrator) and CM(cable modem) of 1Gbps level are designed. This technology not only lowers the production cost in comparison to the existing bonding technology with DOCSIS specification but also enables the adjustment of data speed based on the channel bandwidth. According to the experiments, when convolutional code rate with 128QAM is changed to 1/2, 2/3, 3/4 and 7/8, the data recorded the maximum transmission speed of up to 299 Mbps at the zero error rate. As the convolutional code rates with 256QAM is increased, it showed 334Mbps at the error rate of $10^{-5}$. Based on the findings of this paper, if we secure the channel bandwidth of 200MHz and adjust the modulation order of QAM and the convolution code rate depending on the channel status, we can get the transmission speed of more than 1Gbps, which is much more competitive in its function and price than the existing technology based on DOCSIS.

DRAM Package Substrate Using Via Cutting Structure (비아 절단 구조를 사용한 DRAM 패키지 기판)

  • Kim, Moon-Jung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.7
    • /
    • pp.76-81
    • /
    • 2011
  • A new via cutting structure in 2-layer DRAM package substrate has been fabricated to lower its power distribution network(PDN) impedance. In new structure, part of the via is cut off vertically and its remaining part is designed to connect directly with the bonding pad on the package substrate. These via structure and substrate design not only provide high routing density but also improve the PDN impedance by shortening effectively the path from bonding pad to VSSQ plane. An additional process is not necessary to fabricate the via cutting structure because its structure is completed at the same time during a process of window area formation. Also, burr occurrence is minimized by filling the via-hole inside with a solder resist. 3-dimensional electromagnetic field simulation and S-parameter measurement are carried out in order to validate the effects of via cutting structure and VDDQ/VSSQ placement on the PDN impedance. New DRAM package substrate has a superior PDN impedance with a wide frequency range. This result shows that via cutting structure and power/ground placement are effective in reducing the PDN impedance.