Comparison of Pervaporation and Vapor Permeation Separation Processes for MTBE-methanol System

  • Kim, Youn-Kook (School of Chemical and Polymer Engineering, Hannam University) ;
  • Lee, Keun-Bok (Department of Chemical Engineering, Youngdong University) ;
  • Rhim, Ji-Won (School of Chemical and Polymer Engineering, Hannam University)
  • Published : 2000.12.01

Abstract

This paper deals with the separation of MTBE-methanol mixtures using crosslinked Poly(vinyl alcohol)(PVA) membranes with sulfur-succinic acid(SSA) as a crosslinking agent by pervaporation and vapor permeation technique. The operating temperatures, methanol concentration in feed mixtures, and SSA concentrations in PVA membranes were varied to investigate the separation performance of PVA/SSA membranes and the optimum separation characteristics by pervaporation and vapor permeation. And also, for PVA/SSA membranes, the swelling measurements were carried out to study the transport phenomena. The swelling measurements were carried out for pure MTBE and methanol, and MTBE/methanol=90/10, 80/20 mixtures using PVA/SSA membranes with varying SSA compositions. There are two factors of the membrane network and the hydrogen bonding. In pervaporation separation was also carried out for MTBE/methanol=90/10, 80/20 mixtures at various temperatures. The sulfuric acid group in SSA took an important role in the membrane performance. The crosslinking effect might be over the hydrogen bonding effect due to the sulfuric acid group at 3 and 5% SSA membranes, and this two factors act vice versa on 7% SSA membrane. In this case, the 5% SSA membrane shows the highest separation factor of 2,095 with the flux of 12.79g/㎡$.$hr for MTBE/methanol=80/20 mixtures at 30$^{\circ}C$ which this mixtures show near the azeotopic composition. Compared to pervaporation, vapor permeation showed less flux and similar separation factor. In this case, the flux decreased significantly because of compact structure and the effect of hydrogen bonding. In vapor permeation, density or concentration of methanol in vaporous feed is lower than that of methanol in liquid feed, as a result, the hydrogen bonding portion between the solvent and the hydroxyl group in PVA is reduced in vapor permeation. In this case, the 7% SSA membranes shows the highest separation factor of 2,187 with the flux of 4.84g/㎡$.$hr for MTBE/methanol=80/20 mixtures at 30$^{\circ}C$.

Keywords

References

  1. proceeding of 7th International Conference on Pervaporation Processes in the Chemical Industry C.Streiche;P.Kremer;V.Tomas;A.Hubner;G.Ellinghorst
  2. Sep. Sci. Tech H.C.Park;N.E.Ramaker;M.H.V.Mulder;C.A.Smolders
  3. Hydrocarbon Process v.56 no.12 G.Pecci;T.Floris
  4. Chem. Eng. News v.13 no.June S.J.Ainsworth
  5. J. Memb. Sci v.91 F.Doghieri;A.Nardella;G.C.Sarti;C.Valentini
  6. Ph.D. Dissertation, University of Twente H.C.Park
  7. US Patent 4,774,365 M.S.Chen;R.M.Eng;J.L.Glazer;C.G.Wensley
  8. US Patent 4,798,674 M.Pasternak;C.R.Bartels;J.Reale Jr
  9. US Patent 5,152,898 C.R.Craig
  10. Catal. Today v.25 J.K.Lee;I.K.Song;W.Y.Lee
  11. J. Memb. Sci. v.61 U.Sander;H.Janssen
  12. J. Memb. Sci. v.107 M.S.Schehlmann;E.Widemann;R.N.Lichtenthaler
  13. J. Memb. Sci. v.68 B.Will;R.N.Lichtenthaler
  14. J. Appl. Polym. Sci. v.50 J.W.Rhim;M.Y.Sohn;H.J.Joo;K.H.Lee
  15. J. Appl. Polym. Sci. v.58 K.H.Lee;H.K.Kim;J.W.Rhim
  16. J. Appl. Polym. Sci. v.61 J.W.Rhim;H.K.Kim;K.H.Lee
  17. Polym. Inter. v.30 R.Y.M.Huang;J.W.Rhim
  18. Angew. Makromol. Chemie v.27 C.K.Yeom;R.Y.M.Huang
  19. Desalination v.42 H.N.Chang
  20. J. Appl. Polym. Sci. v.17 C.T.Chen;Y.J.Chang;M.C.Chen;A.V.Tobolsky
  21. Proceedings of the 3rd International Conference Pervaporation Processes in the Chemical Industry R.Nobrega;A.C.Habert;M.E.F.Esposito;C.P.Borges;R.Bakish(ed.)
  22. Polymer v.26 B.Gebben;H.W.A. van den Berg;D.Gargeman;C.A.Smolders
  23. J. Memb. Sci. v.9 R.W.Korsmeyer;N.A.Peppas
  24. Desalination v.46 W.Ying
  25. J. Appl. Polym. Sci. v.27 M.G.Katz;T.Wydeven
  26. J. Appl. Polym. Sci. v.26 M.G.Katz;T.Wydeven
  27. J. Memb. Sci. v.9 W.H.Yang;V.F.Smolen;N.A.Peppas
  28. Synthetic Membranes, Hyper-and Ultrafiltration Uses v.11 S.Peter;S.Stefan;A.F.Turbak(ed.)
  29. German Pat. DE3,220,570,A1 H.E.A.Bruschke
  30. Properties of Polymers D.W.Van Krevelan
  31. J. Memb. Sci. v.77 E.Bode;M.Busse;K.Ruthenberg