• Title/Summary/Keyword: Negative Temperature Coefficient (NTC)

검색결과 31건 처리시간 0.024초

경제적인 NTC 세라믹스 온도센서 시스템을 이용한 콘크리트 수화열 계측에 관한 실험적 연구 (Adiabatic Characteristics of Concrete Temperature with Economical Negative Temperature Coefficient Ceramics Sensor System)

  • 김기수;김종우;전재홍;하재담;김태홍
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.391-396
    • /
    • 2001
  • In order to estimate thermal cracking in mass concrete and to decide the removal time of the forms outside the concrete structures in wintertime, temperature measurement is indispensible. Until now, the measurement system employs thermocouple type. In this paper, we introduce economical and accurate NTC(Negative Temperature Coefficient) ceramic type measurement system. In principle, NTC ceramic type sensor is very sensitive in the range -20~15$0^{\circ}C$. In this range, the signal change is so large that the sensor needs less amplification than thermocouple. Therefore, not only the sensor itself is inexpensive but also the system is too. In this experiments the temperature of the NTC system are identical to those of thermocouple. In conclusion, inexpensive NTC thermistor system is very adequate to the temperature measurement during concrete curing.

  • PDF

NTC 서미스터용 스페넬 페라이트의 특성 (Properties of Spinel Ferrites for NTC Thermistor)

  • 오영우;허정섭;김현식;이승관
    • 한국전기전자재료학회논문지
    • /
    • 제11권7호
    • /
    • pp.546-551
    • /
    • 1998
  • $Mn{1-X}Fe{2+X}O_4, Mg_{1-X}Fe_{2+X}O_4$ (x=0.0, 0.025, 0.1, 0.2) for negative temperature coefficient (NTC) thermistor was prepared by calcination at $800^{\circ}C$ and sintering at form 1100 to $1250^{\circ}C$ with $50^{\circ}C$ intervals. The best linear property was obtained in the Mn-based sample sintered at $1200^{\circ}C$ with x=0.0 composition. Temperature coefficient of resistance, $\alpha$, was $-5.6%/^{\circ}C$ in the Mn-based sample, $-5.2%/^{\circ}C$ in the MM-based sample, and $-1.6%/^{\circ}C$ in the Mg-based sample. thermistor parameter, B, was in the range of 2665~7780 K. The results show the possibility that Mn-Ni-Co based thermistor could be substituted by the composition used in this study.

  • PDF

Mn-Mg-Fe 계 산화물 조성의 저항-온도 특성 (Resistivity-Temperature Properties of Mn-Mg-Fe Oxide Systems)

  • 이승관;김종령;오영우
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.407-410
    • /
    • 2000
  • (M $n_{l-x}$M $g_{l-x}$)F $e_{2+x}$ $O_4$(x=0.0, 0.025, 0.1, 0.2) for NTC(negative temperature coefficient) thermistor was prepared by calcining at 80$0^{\circ}C$ and sintering at from 1100 to 130$0^{\circ}C$ with 5$0^{\circ}C$ intervals while x was varied from 0.0 to 0.025, 0.1 and 0.2. The best linear property was obtained in the based specimen sintered at 120$0^{\circ}C$ with x=0.1 composition. Thermistor parameter, $B_{25~85^{\circ}C}$, was in the range of 5000~ 7300 [K]. Temperature coefficient of resistance, $\alpha$$_{25^{\circ}C}$, was -5.2 %/$^{\circ}C$. The results showed the possibility that Mn-Ni-Co based thermistor could be substituted by the composition used in this study was confirmed.med.d.

  • PDF

HDPE 가교 결합과 계면 접착력 변화에 따른 PTC 특성 연구 (Effects of Interfacial Adhesion and Chemical Crosslinking of HDPE Composite Systems on PTC Characteristics)

  • 김재철;이종훈;남재도
    • 폴리머
    • /
    • 제27권4호
    • /
    • pp.275-284
    • /
    • 2003
  • 접착성이 없는 고밀도 폴리에틸렌 (HDPE)과 나노입자 카본블랙 복합체를 대상으로 전극과의 계면 접착 향상과 고분자 가교 특성에 따른 양온도 계수 (PTC) 특성을 연구하였다. 은페이스트를 전극으로 사용하였을 때에는, 전극과 HDPE의 접착 계면 저항으로 인하여 카본함량이 45 wt% 이상에서 1 $\Omega$ 이었으나, 덴드라이트 (dendrite)된 구리 전극의 경우 HDPE와 전극간의 넓은 면적 접촉에 의한 계면 저항이 0.2 $\Omega$ 이하였다. HDPE와 은페이스트의 계면 저항의 증가로 인하여 구리 박막을 사용하였을 때보다 전체적으로 저항이 높게 나타났다. HDPE와 나노입자 카본블랙 복합체는 온도가 증가하여 HDPE의 비캣연화온도까지는 저항이 일정하게 유지하다가, HDPE의 연화점에서 증가하기 시작하여 용융점에서 극대 값을 나타내는 전형적인 PTC특성을 보여주었다. 일반적으로 HDPE의 용융점을 넘어서면 음온도 계수 (NTC) 현상이 나타나는데, 가교결합을 시킨 HDPE의 경우는, 용융점 이상에서 NTC 현상이 나타나지 않고 저항이 일정하게 유지되거나 증가하는 경향이 나타났다. 구리 (copper) 전극과 고분자와의 계면 접촉 면적을 증가시키기 위하여 크롬 (chromium)을 덴드라이트시킨 전극을 사용하여 계면 접촉 저항을 감소시켰다.

나노구조 카본블랙/HDPE 복합재료의 전기적 특성: 전자선 조사에 의한 PTC 특성변화 (Electrical Properties of Nanostructured Carbon Black-filled HDPE Composites: Effect of Electron Beam Irradiation on PTC Characteristics)

  • 박수진;송수완;서민강;이재락
    • Composites Research
    • /
    • 제16권1호
    • /
    • pp.19-25
    • /
    • 2003
  • 본 연구에서는 나노구조를 갖는 카본블랙이 충전된 CB/HDPE 복합재료를 용융 혼합법으로 제조한 후 온도변화에 따른 전기적 특성을 고찰하였다. 복합재료의 전기적 재현성 향상과 negative temperature coefficient (NTC) 현상의 제거를 위하여 전자선을 30-150 kGy로 조사하였으며, 조사된 복합재료의 가교함량 분석은 용매 추출법을 이용하였다. 실험결과, CB/HDPE 복합재료의 PTC 세기는 카본블랙의 함량과 입자크기에 크게 영향을 받으며. 가교함량의 급격한 증가에 따른 NTC 현상의 제거는 전자선 흡수선량이 60 kGy일 때였다. 또한 전자선 조사를 통하여 전기적 재현성이 향상되었는데, 이는 복합재료의 가교도 증가에 따른 수지의 용융온도 근처에서의 카본블랙 유동성의 감소 때문이라 사료된다.

공정안전용 Polymer PTC 소재의 제조 및 특성 (Preparation and Properties of Polymer PTC Composites for Process Safety)

  • 강영구;조명호
    • 한국안전학회지
    • /
    • 제18권3호
    • /
    • pp.101-108
    • /
    • 2003
  • Polymeric positive temperature coefficient(PTC) composites have been prepared by incorporating carbon black(CB) into high density polyethylene(HDPE), polyphenylene sulfide(PPS) and polybutylene terephthalate(PBT) matrices. A PTC effect was observed in the composite, caused by the large thermal expansion due to He consecutive melting of HDPE, PPS and PBT crystallites. This theory is based upon the premise that the PTC phenomenon is due to a critical separation distance between carbon particles in the polymer matrix at the higher temperature. The influence of PTC characteristics of the PPS/CB composite can be explained by DSC result. HDPE, one of prepared composition, exhibit the higher performance PTC behavior that decreaseing of negative temperature coefficient(NTC) effect and improved reproducibility by chemically crosslinking. Also, PBT/CB and PPS/CB composites exhibit the higher PTC peack temperature than HDPE/CB PTC composite, individually $200^{\circ}C$ and $230^{\circ}C$. These PTC composite put to good use in a number of safety application, such as self$.$controlled heater, over-current protectors, auto resettable switch, high temperature proctection sensor, etc.

박막형 NTC 열형 센서의 제작 및 특성 평가 (Fabrication and characteristic of thin-film NTC thermal sensors)

  • 유미나;이문호;유재용
    • 센서학회지
    • /
    • 제15권1호
    • /
    • pp.65-70
    • /
    • 2006
  • Characteristics of thin-film NTC thermal sensors fabricated by micromachining technology were studied as a function of the thickness of membrane. The overall-structure of thermal sensor has a form of Au/Ti/NTC/$SiO_{X}$/(100)Si. NTC film of $Mn_{1.5}CoNi_{0.5}O_{4}$ with 0.5 mm in thickness was deposited on $SiO_{X}$ layer (1.2 mm) by PLD (pulsed laser deposition) and annealed at 873-1073 K in air for 1 hour. Au(200 nm)/Ti(100 nm) electrode was coated on NTC film by dc sputtering. By the results of microstructure, X-ray and NTC analysis, post-annealed NTC films at 973 K for 1 hour showed the best characteristics as NTC thermal sensing film. In order to reduce the thermal mass and thermal time constant of sensor, the sensing element was built-up on a thin membrane with the thickness of 20-65 mm. Sensors with thin sensing membrane showed the good detecting characteristics.

Ni-Mn 산화물 NTC 서미스터의 미세구조와 전기적 특성에 미치는 CuO 첨가의 효과 (Effect of CuO Addition on the Microstructural and Electrical Properties of Ni-Mn Oxide NTC Thermistor)

  • 김경민;이성갑;이동진;박미리
    • 한국전기전자재료학회논문지
    • /
    • 제29권6호
    • /
    • pp.337-341
    • /
    • 2016
  • In this study, $ Ni_{0.79}(Mn_{2.21-x}Cu_x)O_4$ (x=0~0.25) specimens were prepared by using a conventional mixed oxide method. All specimens were sintered in air at $1,200^{\circ}C$ for 12 h and cooled at a rate of $2^{\circ}C/min$ to $800^{\circ}C$, subsequently quenching to room temperature. We investigated the structural and electrical properties of $ Ni_{0.79}(Mn_{2.21-x}Cu_x)O_4$ specimens with variation of CuO amount for the application of NTC thermistors. As results of X-ray diffraction patterns, all specimens showed the formation of a complete solid solution with cubic spinel phase. The relationship between ln ${\rho}$ and the reciprocal of absolute temperature(1/T) for the NTC thermistors was shown linearity, which exhibited the typical NTC thermistor properties. With increasing the amount of CuO, resistivity at room temperature, B-value, and temperature coefficient resistance decreased.

혼합 액체 연료인 항공유의 점화지연시간 측정에 관한 연구 (Measurement of Ignition Delay Time of Jet Aviation Fuel)

  • 한희선;왕위엔강;김철진;손채훈
    • 한국연소학회지
    • /
    • 제22권3호
    • /
    • pp.35-40
    • /
    • 2017
  • Jet aviation fuel is one of liquid fuel which are used in aircraft engines. Korean domestic jet fuel, called Jet A-1, is tested for measurement of ignition delay time by using a shock tube manufactured recently. The temperature varies from 680 to 1250 K and the pressure and equivalence ratio of Jet A-1/air are fixed 20 atm and 1.0, respectively, for this experiment. The ignition delay time data of Jet A-1 are compared with those of Jet A, which has similar properties to Jet A-1. The behavior of negative-temperature-coefficient (NTC) is observed in the temperature range 750-900 K. In addition, ignition delay time of iso-octane is measured, which is one of the surrogate components for jet aviation fuel. The experimental data are compared and validated with the previous results from the literatures. A surrogate fuel for the present Jet A-1 consists of 45.2% n-dodecane, 32.1% iso-octane, and 22.7% 1,3,5-trimethylbenzene. The predicted ignition delay time for the surrogate agrees well with the measured one for Jet A-1.

A New Class of NTC Thermistors

  • Kato, Kazuya;Ota, Toshitaka;Hikichi, Yasuo;Unuma, Hidero;Takahashi, Minoru;Suzuki, Hisao
    • The Korean Journal of Ceramics
    • /
    • 제6권2호
    • /
    • pp.168-171
    • /
    • 2000
  • VO$_2$ceramics exhibiting a negative temperature coefficient (NTC) of resistivity have been widely used as temperature dependence resistors. The NTC effect similar to $VO_2$ceramics was observed when a low-thermal-expansion ceramic matrix was loaded near the percolation threshold with conductive metal particles. The resistivity in a composite made from silica glass and 20 vol% Ag filler suddenly decreased from $10^{-7}$ to $10^3\;\Omega$cm at about $300^{\circ}C$.

  • PDF