Effects of Interfacial Adhesion and Chemical Crosslinking of HDPE Composite Systems on PTC Characteristics

HDPE 가교 결합과 계면 접착력 변화에 따른 PTC 특성 연구

  • 김재철 (성균관대학교 고분자공학과) ;
  • 이종훈 (성균관대학교 고분자 기술연구소) ;
  • 남재도 (성균관대학교 고분자공학과)
  • Published : 2003.07.01

Abstract

The positive temperature coefficient (PTC) effects of high density polyethylene (HDPE)/carbon black composite materials were investigated by enhancing adhesive characteristics of electrodes and controlling HDPE chemical crosslinking. When the silver paste was used as an electrode for the same 45 wt% HDPE/carbon composites, the resistance was over 1 $\Omega$, which should be compared with the resistance of 0.2 $\Omega$ for the dendritic copper electrode. In general, the silver-paste electrode exhibited higher electrical resistance than cupper electrode due to the interfacial resistance between the electrode and PTC composites. The HDPE/carbon composite exhibited typical PTC characteristics maintaining a constant resistance up to vicat point and showing a maximum at the melting point of HDPE. The crosslinked HDPE significantly decreased the negative temperature coefficient (NTC) phenomena, and desirably showed a constant or slightly increasing feature of electrical resistance in the high temperature region.

접착성이 없는 고밀도 폴리에틸렌 (HDPE)과 나노입자 카본블랙 복합체를 대상으로 전극과의 계면 접착 향상과 고분자 가교 특성에 따른 양온도 계수 (PTC) 특성을 연구하였다. 은페이스트를 전극으로 사용하였을 때에는, 전극과 HDPE의 접착 계면 저항으로 인하여 카본함량이 45 wt% 이상에서 1 $\Omega$ 이었으나, 덴드라이트 (dendrite)된 구리 전극의 경우 HDPE와 전극간의 넓은 면적 접촉에 의한 계면 저항이 0.2 $\Omega$ 이하였다. HDPE와 은페이스트의 계면 저항의 증가로 인하여 구리 박막을 사용하였을 때보다 전체적으로 저항이 높게 나타났다. HDPE와 나노입자 카본블랙 복합체는 온도가 증가하여 HDPE의 비캣연화온도까지는 저항이 일정하게 유지하다가, HDPE의 연화점에서 증가하기 시작하여 용융점에서 극대 값을 나타내는 전형적인 PTC특성을 보여주었다. 일반적으로 HDPE의 용융점을 넘어서면 음온도 계수 (NTC) 현상이 나타나는데, 가교결합을 시킨 HDPE의 경우는, 용융점 이상에서 NTC 현상이 나타나지 않고 저항이 일정하게 유지되거나 증가하는 경향이 나타났다. 구리 (copper) 전극과 고분자와의 계면 접촉 면적을 증가시키기 위하여 크롬 (chromium)을 덴드라이트시킨 전극을 사용하여 계면 접촉 저항을 감소시켰다.

Keywords

References

  1. Polym. Eng. Sci. v.13 J.Meyer https://doi.org/10.1002/pen.760130611
  2. Comp. Sci. Tech. v.61 X.S.Yi;L.Shen;Y.Pan https://doi.org/10.1016/S0266-3538(00)00191-3
  3. Polymer v.41 J.Feng;C.M.Chan https://doi.org/10.1016/S0032-3861(00)00095-1
  4. Polym. Comp. v.19 Z.Z.Huang;R.Yue;H.L.W.Chan;C.L.Choy https://doi.org/10.1002/pc.10152
  5. J. Appl. Polym. Sci. v.81 H.Mironi;M.Narkis https://doi.org/10.1002/app.1419
  6. J. Appl. Polym. Sci. v.19 C.Klason;J.Kubat https://doi.org/10.1002/app.1975.070190319
  7. J. Euro. Ceram. Soc. v.15 J.D.Russell;C.Leach https://doi.org/10.1016/0955-2219(95)00023-N
  8. J. Appl. Phys. v.60 B.Lundberg;B.Sundqvist https://doi.org/10.1063/1.337401
  9. Macromol. Symp. v.170 Y.Mamunya https://doi.org/10.1002/1521-3900(200106)170:1<257::AID-MASY257>3.0.CO;2-J
  10. Carbon v.39 M.Hindermann Bischoff;F.Ehrburger Dollle https://doi.org/10.1016/S0008-6223(00)00130-5
  11. J. Polym. Sci., Part B: Polym. Phys. v.39 H.Mironi;M.Narkis https://doi.org/10.1002/polb.1113
  12. Eur. Polym. J. v.33 H.Tang;X.G.Chen;Y.X.Luo https://doi.org/10.1016/S0014-3057(96)00221-2
  13. J. Appl. Polym. Sci. v.66 W.T.Jia;X.F.Chen https://doi.org/10.1002/(SICI)1097-4628(19971205)66:10<1885::AID-APP5>3.0.CO;2-J
  14. J. Mater. Sci. v.35 H.M.A.Allak;A.W.Brinkman;J.Woods
  15. IEMT/IMC Proceeding A.H.Feingold;P.Amstutz;R.L.Wahlers;C.Huang; S.J.Stein
  16. J. Appl. Polym. Sci. v.83 J.F.Zhang;Q.Zheng;Y.Q.Yang;X.S.Yi https://doi.org/10.1002/app.10049
  17. Microelectronics Reliablity v.41 O.Mrooz;A.Kovalski;J.Pogorzelska;O.Shpotyuk;M.Vakiv;B.Butkiewicz;J.Maciak https://doi.org/10.1016/S0026-2714(01)00027-0
  18. Carbon v.40 Y.Bin;C.Xu;D.Zhu;M.Matsuo https://doi.org/10.1016/S0008-6223(01)00173-7
  19. J. Appl. Polym. Sci. v.67 X.S.Yi;G.Wu;D.Ma https://doi.org/10.1002/(SICI)1097-4628(19980103)67:1<131::AID-APP15>3.0.CO;2-4
  20. J. Appl. Polym. Sci. v.77 X.S.Yi;J.F.Zhang;Q.Zheng;Y.Pan https://doi.org/10.1002/(SICI)1097-4628(20000718)77:3<494::AID-APP4>3.0.CO;2-K
  21. Carbon v.39 A.Subrenat;J.N.Baleo;P.L.Cloirec;P.E.Blanc https://doi.org/10.1016/S0008-6223(00)00177-9
  22. Transaction on Power Delivery v.14 R.Strumpler;J.skindhøj;J,G.Reichenbach;J.H.W.Kuhlefelt;F.Perdoncin https://doi.org/10.1109/61.754084
  23. J. Euro. Ceram. Soc. v.20 P.Supancic https://doi.org/10.1016/S0955-2219(00)00100-X
  24. Sensor Actuat. B-Chem. v.60 S.Chatterjee;K.Sengupta;H.S.Maiti https://doi.org/10.1016/S0925-4005(99)00265-8
  25. J. Appl. Phys. v.81 R.Strumpler;G.Maidorn;J.Rhyner https://doi.org/10.1063/1.365222
  26. Mater. Chem. Phys. v.67 S.Chatterjee;H.S.Maiti https://doi.org/10.1016/S0254-0584(00)00454-5
  27. Transactions on Compoments Hybrids and Manufacturing Technology v.CHMT-4 F.A.Doljack
  28. Korea patent 10-2001-0027981 S.J.Lee;J.D.Nam;S.J.Suh;J.W.Yoon
  29. Korea Patent 20-2001-0011056 S.J.Lee;J.D.Nam;S.J.Suh
  30. International Symposium of Carbon v.C10-07 K.Hongawa;T.Kawai;A.Yokoyama
  31. J. Polym. Sci., Part B:Polym. Phys. v.38 Y. Song;Y.Pan;Q.Zheng;X.S.Yi https://doi.org/10.1002/1099-0488(20000701)38:13<1756::AID-POLB90>3.0.CO;2-P
  32. J. Clin. Apher. v.14 H.Toshihiko;S.Kimihiro;O.Makoto;T.M.Mitsuyo;K.Makoto;H.Takuya;M.Yuji;K.Makoto;O.Fumitaka https://doi.org/10.1002/(SICI)1098-1101(1999)14:2<63::AID-JCA3>3.0.CO;2-B
  33. Electronics and Communications in Japan, Part 2 v.82 A.Ueno;S.Sugawa
  34. Mater. Sci. Eng. B v.38 H.R.Kokabi;M.Rapeauz;J.A.Aymami;G.Desgardin https://doi.org/10.1016/0921-5107(95)01504-3
  35. Transaction on Electrical Insulating v.EI-20 R.D.Ford;I.M.Vitkovitsky https://doi.org/10.1109/TEI.1985.348753
  36. Transactions on Components, Packaging and Manufacturing Technology-Part A v.18 L.Wang;Z.Zhou https://doi.org/10.1109/95.390297
  37. Synthetic Metals v.101 Y.W.Liu;K.Oshima;T.Yamauchi;M.Shimomura;S.Miyauchi https://doi.org/10.1016/S0379-6779(98)01172-2
  38. J. Appl. Polym. Sci. v.73 G.Yu;M.Q.Zhang;H.M.Zeng;Y.H.Hou;H.B.Zhang https://doi.org/10.1002/(SICI)1097-4628(19990725)73:4<489::AID-APP4>3.0.CO;2-A
  39. Transactions on Components and Packaging Technologies v.23 S.Luo;C.P.Wong https://doi.org/10.1109/6144.833054
  40. Polymer v.41 J.Feng;C.M.Chan https://doi.org/10.1016/S0032-3861(99)00690-4
  41. J. Appl. Polym. Sci. v.73 G.Yu;M.Q.Zhang;H.M.Zeng;Y.H.Hou;H.B.Zhang https://doi.org/10.1002/(SICI)1097-4628(19990725)73:4<489::AID-APP4>3.0.CO;2-A
  42. J. Appl. Polym. Sci. v.77 X.Zhang;Y.Pan;L.Shen;X.Yi https://doi.org/10.1002/(SICI)1097-4628(20000725)77:4<756::AID-APP7>3.0.CO;2-Y
  43. J. Appl. Polym. sci. v.80 X.He;L.Wang,X.Chen https://doi.org/10.1002/app.1249
  44. J. Appl. Polym. Sci. v.66 W.Jia;X.Chen https://doi.org/10.1002/(SICI)1097-4628(19971205)66:10<1885::AID-APP5>3.0.CO;2-J
  45. J. Appl. Polym. Sci. v.73 O.Breuer;R.Tchoudakov;M.Nakkis;A.Siegmann
  46. Polymer(Korea) v.26 J.C.Kim;G.H.Park;S.J.Suh;Y.K.Lee;S.J.Lee;S.J.Lee;J.D.Nam
  47. J. Appl. Polym. Sci. v.77 Y.Liu;K.Oshima;T.Yamauchi;M.Shimomura;S.Miyauchi https://doi.org/10.1002/1097-4628(20000929)77:14<3069::AID-APP70>3.0.CO;2-B
  48. J. Appl. Polym. Sci. v.80 G.Wu;C.Zhang;T.Miura;S.Asai;M.Sumita https://doi.org/10.1002/app.1191
  49. Synthetic Metals v.102 G.Boiteux;J.Fournier;D.Issotier;G.Seytre;G.Marichy https://doi.org/10.1016/S0379-6779(98)01432-5
  50. J. Appl, Phys. v.53 K.T.Chung;A.Sabo;A.P.Pica https://doi.org/10.1063/1.330027
  51. Prog. Polym. Sci. v.24 G.Moad https://doi.org/10.1016/S0079-6700(98)00017-3
  52. J. Appl. Polym. Sci. v.49 T.Bremner;A.Rudin https://doi.org/10.1002/app.1993.070490504
  53. Carbon v.32 H.P.Boehm https://doi.org/10.1016/0008-6223(94)90031-0
  54. Polymer v.43 L.Yang;F.Zhang;T.Endo;T.Hirotsu https://doi.org/10.1016/S0032-3861(01)00802-3
  55. Polym. Int. v.59 D.Roy;G.P.Simon;M.Forsyth
  56. Polym. Adv. Technol. v.32 J.K.Mishra;S.Roychowdhury;C.K.Das