Browse > Article
http://dx.doi.org/10.15231/jksc.2017.22.3.035

Measurement of Ignition Delay Time of Jet Aviation Fuel  

Han, Hee Sun (Department of Mechanical Engineering, Sejong University)
Wang, YuanGang (Department of Mechanical Engineering, Sejong University)
Kim, Chul Jin (Department of Mechanical Engineering, Sejong University)
Sohn, Chae Hoon (Department of Mechanical Engineering, Sejong University)
Publication Information
Journal of the Korean Society of Combustion / v.22, no.3, 2017 , pp. 35-40 More about this Journal
Abstract
Jet aviation fuel is one of liquid fuel which are used in aircraft engines. Korean domestic jet fuel, called Jet A-1, is tested for measurement of ignition delay time by using a shock tube manufactured recently. The temperature varies from 680 to 1250 K and the pressure and equivalence ratio of Jet A-1/air are fixed 20 atm and 1.0, respectively, for this experiment. The ignition delay time data of Jet A-1 are compared with those of Jet A, which has similar properties to Jet A-1. The behavior of negative-temperature-coefficient (NTC) is observed in the temperature range 750-900 K. In addition, ignition delay time of iso-octane is measured, which is one of the surrogate components for jet aviation fuel. The experimental data are compared and validated with the previous results from the literatures. A surrogate fuel for the present Jet A-1 consists of 45.2% n-dodecane, 32.1% iso-octane, and 22.7% 1,3,5-trimethylbenzene. The predicted ignition delay time for the surrogate agrees well with the measured one for Jet A-1.
Keywords
Shock tube; Ignition delay time; Negative temperature coefficient (NTC);
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Coordinating Support of Fuels and Lubricant Research and Development (R&D) 2, Delivery Order 0002 : Handbook of Aviation, Coordinating Research Council Inc., Alpharetta GA, 2004, 1-144.
2 S.R. Turns. An introduction to combustion, McGraw-Hill, 3rd edition, 2000, 1-676.
3 B.P. Mullins, Development of a combustion test rig for measuring the ignition delay of fuels, Fuel, 32 (1953) 234-352.
4 V.L. Zimont, Y.M. Trushin, Ignition lag of hydrocarbon fuels at high temperatures, Combust. Explo. Shock Waves, 3 (1967) 51-56.
5 F. Ducourneau, Spontaneous combustion of rich air-kerosene mixtures. Entropie., 10 (1974) 11-18.
6 L.J. Spadaccini, J.A. Tevelde, Autoignition characteristics of aircraft-type fuels, Combust. Flame, 46 (1982) 282-300.
7 C.P. Wood, V.G. Mcdonnell, R.A. Smith, G.S. Samuelsen, Development and application of a surrogate distillate fuel, J. Propul. Power, 5 (1989) 399-405.   DOI
8 A.J. Dean, O.G. Penyazkov, K.L. Sevruk, B. Varatharajan, Autoignition of surrogate fuels at elevated temperatures and pressures, Proc. Combust. Inst., 31 (2007) 2481-2488.   DOI
9 S.S. Vasu, D.F. Davidson, R.K. Hanson, Jet fuel ignition delay times: Shock tube experiments over wide conditions and surrogate model predictions, Combust. Flame, 152 (2008) 125-143.   DOI
10 S. Dooley, S.H. Won, M. Chaos, J. Heyne, Y.G. Ju, F.L. Dryer, K. Kumar, C.J. Sung, H.W. Wang, M.A. Oehlschlaeger, R.J. Santoro, T.A. Litzinger, A jet fuel surrogate formulated by real fuel properties, Combust. Flame, 157 (2010) 2333-2339.   DOI
11 H. Wang, M.A. Oehlschlaeger, Autoignition studies of conventional and Fischer-Tropsch jet fuels, Fuel, 98 (2012) 249-258.   DOI
12 S. Dooley, S.H. Won, J. Heyne, T.I. Farouk, Y. Ju, F.L. Dryer, K. Kumar, X. Hui, C.J. Sung, H. Wang, M.A. Oehlschlaeger, V. Iyer, S. Iyer, T.A. Litzinger, R.J. Santoro, T. Malewicki, K. Brezinsky, The experimental evaluation of a methodology for surrogate fuel formulation to emulate gas phase combustion kinetic phenomena, Combust. Flame, 159 (2012) 1444-1466.   DOI
13 H-P.S. Shen, J. Vanderover, M.A. Oehlschlaeger, A shock tube study of iso-octane ignition at elevated pressures: The influence of diluent gases, Combust. Flame, 155 (2008) 739-355.   DOI
14 D.F. Davidson, B.M. Gauthier, R.K. Hanson, Shock tube ignition measurements of iso-octane/air and toluene/air at high pressures, Proc. Combust. Inst., 30 (2005) 1175-1182.   DOI
15 K. Fieweger, R. Blumenthal, G. Adomeit, Shocktube investigations on the self-ignition of hydrocarbon-air mixtures at high pressures, The 25th Combustion Institute Symposium, 25, 1994, 1579-1585.
16 H.S. Han, Y.G. Wang, C.J. Kim, C.H. Sohn, Measurement of Ignition Delay Time of Methane/Oxygen Mixture by Using a Shock Tube, J. Korean Soc. Combust., 22 (2017) 8-13.
17 P. Dievart, H.H. Kim, S.H. Won, Y. Ju, F.L. Dryer, S. Dooley, W. Wang, M.A. Oehlschlaeger, The combustion properties of 1,3,5-trimethylbenzene and a kinetic model, Fuel, 109 (2013) 125-136.   DOI
18 S.S. Vasu, D.F. Davidson, Z. Hong, V. Vasudevan, R.K. Hanson, n-Dodecane oxidation at high-pressures: Measurements of ignition delay times and OH concentration time-histories, Proc. Combust. Inst., 32 (2009) 173-180.   DOI
19 H-P.S. Shen, J. Steinberg, J. Vanderover, M.A. Oehlschlaeger, A Shock Tube Study of the Ignition of n-Heptane, n-Decane, n-Dodecane, and n-Tetradecane at Elevated Pressures, Energy Fuels, 23 (2009) 2482-2489.   DOI
20 E.L. Petersen, M.J.A. Rickard, M.W. Crofton, E.D. Abbey, M.J. Traum, D.M. Kalitan, A facility for gas-and condensed-phase measurements behind shock waves, Meas. Sci. Technol., 16 (2005) 1716-1729.   DOI
21 S. Downes, A. Knott, I. Robinson, Uncertainty Estimation of Shock Tube Pressure Steps, Proc. 21st IMEKO World Congress on Measurement in Research and Industy, 2015, 1-4.
22 J.T. Herbon, Shock Tube Measurements of $CH_3+O_2$ Kinetics and the Heat of Formation of the OH Radical, Stanford University, Ph.D. thesis, 2004, 1-172.