• Title/Summary/Keyword: Near Seoul

Search Result 1,861, Processing Time 0.039 seconds

Reconstruction of Vacancy Defects in Graphene and Carbon Nanotube

  • Lee, Gun-Do;Yoon, Eui-Joon;Hwang, Nong-Moon;Wang, Cai-Zhuang;Ho, Kai-Ming
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.340-340
    • /
    • 2010
  • Various structures of vacancy defects in graphene layers and carbon nanotubes have been reported by high resolution transmission electron microscope (HR-TEM) and those arouse an interest of reconstruction processes of vacancy defects. In this talk, we present reconstruction processes of vacancy defects in a graphene and a carbon nanotube by tight-binding molecular dynamics (TBMD) simulations and by first principles total energy calculations. We found that a structure of a dislocation defect with two pentagon-heptagon (5-7) pairs in graphene becomes more stable than other structures when the number of vacancy units is ten and over. The simulation study of scanning tunneling microscopy reveals that the pentagon-heptagon pair defects perturb the wavefunction of electrons near Fermi level to produce the $\sqrt{3}\;{\times}\;\sqrt{3}$ superlattice pattern, which is in excellent agreement with experiment. It is also observed in our tight-binding molecular dynamics simulation that 5-7 pair defects play a very important role in vacancy reconstruction in a graphene layer and carbon nanotubes.

  • PDF

Starfish Capture Robotic Platform: Conceptual Design and Analysis (불가사리 채집 로봇 플랫폼의 개념설계 및 분석)

  • Jin, Sang-Rok;Lee, Suk-Woo;Kim, Jong-Won;Seo, Tae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.9
    • /
    • pp.978-985
    • /
    • 2012
  • Starfish are a critical problem for fishermen since they eat every farming product including shellfish. The number of starfish is increasing dramatically because they have no natural enemy underwater. We consider the concept of capturing starfish using a semi-autonomous robot. A new underwater robot design to capture starfish is proposed using cooperation between humans and the robot. A requirements list for the robot is developed and two conceptual designs are proposed. Each robot is designed as a modular platform. The kinematic and dynamic performance of each robot is analyzed and compared. This study is a starting point for developing a starfish capture robot and designing underwater robots for other applications. In the near future, a prototype will be assembled and tested in a marine environment.

Application of single-well push-drift-pull tests using dual tracers (SF6 and salt) for designing CO2 leakage monitoring network at the environmental impact test site in Korea

  • Kim, Hong-Hyun;Lee, Seong-Sun;Ha, Seung-Wook;Lee, Kang-Kun
    • Geosciences Journal
    • /
    • v.22 no.6
    • /
    • pp.1041-1052
    • /
    • 2018
  • A single-well push-drift-pull tracer test using two different tracers ($SF_6$ and salt) was performed at the Environmental Impact Test (EIT) site to determine suitable locations for monitoring wells and arrange them prior to artificial $CO_2$ injection and leak tests. Local-scale estimates of hydraulic properties (linear groundwater velocity and effective porosity) were obtained at the study site by the tracer test with two tracers. The mass recovery percentage of the volatile tracer ($SF_6$) was lower than that of the non-volatile tracer (salt) and increased drift time may make degassing of $SF_6$ intensified. The $CO_2$ leakage monitoring results for both unsaturated and saturated zones suggest that the $CO_2$ monitoring points should be located near points at which a high concentration gradient is expected. Based on the estimated hydraulic properties and tracer mass recovery rates, an optimal $CO_2$ monitoring network including boreholes for monitoring the unsaturated zone was constructed at the study site.

Atomic Layer Deposition for Powder Coating (분말 코팅을 위한 원자층 증착법)

  • Choi, Seok;Han, Jeong Hwan;Choi, Byung Joon
    • Journal of Powder Materials
    • /
    • v.26 no.3
    • /
    • pp.243-250
    • /
    • 2019
  • Atomic layer deposition (ALD) is widely used as a tool for the formation of near-atomically flat and uniform thin films in the semiconductor and display industries because of its excellent uniformity. Nowadays, ALD is being extensively used in diverse fields, such as energy and biology. By controlling the reactivity of the surface, either homogeneous or inhomogeneous coating on the shell of nanostructured powder can be accomplished by the ALD process. However, the ALD process on the powder largely depends on the displacement of powder in the reactor. Therefore, the technology for the fluidization of the powder is very important to redistribute its position during the ALD process. Herein, an overview of the three types of ALD reactors to agitate or fluidize the powder to improve the conformality of coating is presented. The principle of fluidization its advantages, examples, and limitations are addressed.

Prediction of the number of public bicycle rental in Seoul using Boosted Decision Tree Regression Algorithm

  • KIM, Hyun-Jun;KIM, Hyun-Ki
    • Korean Journal of Artificial Intelligence
    • /
    • v.10 no.1
    • /
    • pp.9-14
    • /
    • 2022
  • The demand for public bicycles operated by the Seoul Metropolitan Government is increasing every year. The size of the Seoul public bicycle project, which first started with about 5,600 units, increased to 3,7500 units as of September 2021, and the number of members is also increasing every year. However, as the size of the project grows, excessive budget spending and deficit problems are emerging for public bicycle projects, and new bicycles, rental office costs, and bicycle maintenance costs are blamed for the deficit. In this paper, the Azure Machine Learning Studio program and the Boosted Decision Tree Regression technique are used to predict the number of public bicycle rental over environmental factors and time. Predicted results it was confirmed that the demand for public bicycles was high in the season except for winter, and the demand for public bicycles was the highest at 6 p.m. In addition, in this paper compare four additional regression algorithms in addition to the Boosted Decision Tree Regression algorithm to measure algorithm performance. The results showed high accuracy in the order of the First Boosted Decision Tree Regression Algorithm (0.878802), second Decision Forest Regression (0.838232), third Poison Regression (0.62699), and fourth Linear Regression (0.618773). Based on these predictions, it is expected that more public bicycles will be placed at rental stations near public transportation to meet the growing demand for commuting hours and that more bicycles will be placed in rental stations in summer than winter and the life of bicycles can be extended in winter.

Study of the growth of Au films on Si(100) and Si films on Ge(100) surface

  • Kim, J.H.;Lee, Y.S.;Lee, K.H.;Weiss, A.;Lee, J.H.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.3
    • /
    • pp.133-138
    • /
    • 2002
  • The growth of Au films grown on a Si(100)-2x1 surface and Si films on a Ge(100)-2x1 substrate is studied using Positron-annihilation induced Auger Electron Spectroscopy(PAES), Electron induced Auger Electron Spectroscopy(EAES), and Low Energy Electron Diffraction(LEED). Previous work has shown that PAES is almost exclusively sensitive to the top-most atomic layer due to the trapping of positrons in an image potential well just outside the surface before annihilation. This surface specificity is exploited to profile the surface atomic concentrations during the growth of Au on Si(100) and Si on Ge(100) and EAES provides concentrations averaged over the top 3-10 atomic layers simultaneously. The difference in the probe-depth makes us possible to use PAES and EAES in a complementary fashion to estimate the surface and near surface concentration profiles. The results show that (i) the intermixing of Au and Si atoms occurs during the room temperature deposition, (ii) the segregated Ge layer is observed onto the Si layers deposited at 300k. In addition, the prior adsorption of hydrogen prevents the segregation of Ge on top of the deposited Si and that the hydrogen adsorption is useful in growing a thermally stable structure.

  • PDF

Development of an ECCS Injection Model By Gravity and Flow Rate Distributions in the Passive Reactor Systems (비상노심냉각수의 중력에 의한 주입 및 피동형노심내의 흐름율 분포모델의 개발)

  • Lim, H.G.;Kim, G.S.;Lee, U.C.
    • Nuclear Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.562-569
    • /
    • 1994
  • In this study improvement of transient analysis model, KOTRAC, for the passive reactor has been performed. In the KOTRAC, mixture drift flux model is adopted to simulate thermal hydraulic behavior, which can simulate ECCS injection in the passive plant. However, there is a difficulty to handle complete phase separation phenomena due to the near-zero density, which may occur in the pressurizer surge line or horizontal flow paths. In this study, a couple of model changes to over-come Courant limit feilure has been examined. One of key features is to substitute flow distribution parameters with Ishii's correlation. Corrected results are nil compared to those of RELAP/MOD3 analysis.

  • PDF

Recent Progress of Developing Next-Generation Electrochromic Windows from Plasmonic Metal Oxide Nanocrystals (플라즈몬 금속 산화물 나노입자를 활용한 차세대 전기변색 소자 개발 동향)

  • Janghan Na;Sungbin Kim;Sungyeon Heo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • Direct use of sunlight through the glass windows is an efficient way to reduce the energy consumption related to the heating, cooling, and lighting. Introduction of near-infrared modulating properties through colloidal doped metal oxide nanocrystals into the classical electrochromic materials accelerates the development of next-generation electrochromic devices. There has been a steady enhancement in the performance of electrochromic devices, necessitating a review of the recent progress in next-generation electrochromic devices employing doped metal oxide nanocrystals. This review provides an overview of the current developments in next-generation electrochromic smart windows utilizing colloidal doped metal oxide nanocrystals, with a focus on the key factors for achieving these advanced windows. Colloidal doped metal oxide nanocrystals are a crucial component in realizing and bringing to market the next generation of electrochromic windows, though further research and development are still required in this regard.

Development of GPU-Paralleled multi-resolution techniques for Lagrangian-based CFD code in nuclear thermal-hydraulics and safety

  • Do Hyun Kim;Yelyn Ahn;Eung Soo Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2498-2515
    • /
    • 2024
  • In this study, we propose a fully parallelized adaptive particle refinement (APR) algorithm for smoothed particle hydrodynamics (SPH) to construct a stable and efficient multi-resolution computing system for nuclear safety analysis. The APR technique, widely employed by SPH research groups to adjust local particle resolutions, currently operates on a serialized algorithm. However, this serialized approach diminishes the computational efficiency of the system, negating the advantages of acceleration achieved through high-performance computing devices. To address this drawback, we propose a fully parallelized APR algorithm designed to enhance both efficiency and computational accuracy, facilitated by a new adaptive smoothing length model. For model validation, we simulated both hydrostatic and hydrodynamic benchmark cases in 2D and 3D environments. The results demonstrate improved computational efficiency compared to the conventional SPH method and APR with a serialized algorithm, and the model's accuracy was confirmed, revealing favorable outcomes near the resolution interface. Through the analysis of jet breakup, we verified the performance and accuracy of the model, emphasizing its applicability in practical nuclear safety analysis.

Eating Habits of the University Students affected by Stress Levels in the Areas of Seoul and Gangwon Province (서울과 강원 일부지역 대학생들의 스트레스 정도가 식습관에 미치는 영향)

  • Lee, Jeongsill
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.5
    • /
    • pp.782-793
    • /
    • 2015
  • The purpose of this study is the examination of stress levels and the eating habits that are affected by stress, and the provision of basic nutritional education data for the improvement of the eating habits of students who have experienced stress-related nutritional problems. Using the BEPSI-K instruments, a questionnaire survey was administered to 327 student subjects (166 male and 161 female) in the areas of Seoul and Gangwon province. The subjects were classified into 3 groups (low-stress, medium-stress and high-stress), and 59 students (18%) belonged the high-stress group. The BMI readings of the Gangwon province students are significantly higher than those of the Seoul students. The survey results show that the lunch frequency and vegetable intake levels are lower in the high-stress group, whereas the intakes of hot spicy food is higher in this group; they also show that Gangwon province students had eating habits that are relatively undesirable compared with the Seoul students. There are significant differences between the Seoul students and Gangwon porvince students regarding residence type, household economic level, types of leisure activities and level of some stresses. The Gangwon province students ate occasionally breakfast, lunch and snacks, but their midnight snack consumption is relatively frequent compared with the Seoul students. The results of the survey indicate that the BEPSI-K score has a negative correlation with the following variables : sleeping time, economic level of household, degrees of satisfaction regarding appearance and academic achievements, lunch frequency and vegetable intakes. Desirable eating habits are essential for the maintenance of a favorable health status and for the stress-management of university students who need to be a healthy members of society in the near future. To facilitate the formation of desirable eating habits among university students, community-based nutritional assistance and appropriate nutritional education programs should be considered necessary.