• Title/Summary/Keyword: Near Collision

Search Result 151, Processing Time 0.03 seconds

Near-Minimum Time Trajectory Planning of Two Robots with Collision Avoidance (두 대의 로봇의 근사 최소시간 제어를 위한 충돌회피 궤적 계획)

  • Lee, Dong-Soo;Chong, Nak-Young;Suh, Il-Hong;Choi, Dong-Hoon;Lyou, Joon
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1495-1502
    • /
    • 1991
  • 본 연구에서는 동일 작업 공간내에서 두대의 로봇이 각각의 토크의 제한 조건 과 충돌 회피 조건을 만족하면서 근사 최소 시간에 지정된 경로를 주행하기 위한 궤적 계획법을 제안하고자 한다. 이때, 동작 우선도에 의하여 한 대의 로봇은 주 로봇, 다른 한 대의 로봇은 종 로봇으로 지정되는데 주 로봇은 입력 토크의 제한조건을 만족 하며 주어진 경로를 최소 시간에 움직이도록 궤적 계획을 하였으며, 종 로봇은 주 로 봇과의 충돌을 피하고 입력 토크의 제한 조건을 만족하며 주어진 경로를 근사 최소 시 간에 움직이도록 하였다.

Obstacle Avoidance using Power Potential Field for Stereo Vision based Mobile Robot (PPF를 이용한 4족 로봇의 장애물 회피)

  • 조경수;김동진;기창두
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.554-557
    • /
    • 2002
  • This paper describes power potential field method for the collision-free path planning of stereo-vision based mobile robot. Area based stereo matching is performed for obstacle detection in uncertain environment. The repulsive potential is constructed by distributing source points discretely and evenly on the boundaries of obstacles and superposing the power potential which is defined so that the source potential will have more influence on the robot than the sink potential when the robot is near to source point. The mobile robot approaches the goal point by moving the robot directly in negative gradient direction of the main potential. We have investigated the possibility of power potential method for the collision-free path planning of mobile robot through various experiments.

  • PDF

Analyzing the Spray-to-spray Interaction of GDI Injector Nozzle in the Near-field Using X-ray Phase-Contrast Imaging (X선 위상차 가시화 기법을 이용한 GDI 인젝터 노즐 근방의 분무 간 상호간섭 해석)

  • Bae, Gyuhan;Moon, Seoksu
    • Journal of ILASS-Korea
    • /
    • v.25 no.2
    • /
    • pp.60-67
    • /
    • 2020
  • Despite its benefit in engine thermal efficiency, gasoline-direct-injection (GDI) engines generate substantial particulate matter (PM) emissions compared to conventional port-fuel-injection (PFI) engines. One of the reasons for this is that the spray collapse caused by the spray-to-spray interaction forms the locally rich fuel-air mixture and increases the fuel wall film. Previous studies have investigated the spray collapse phenomenon through the macroscopic observation of spray behavior using laser optical techniques, but it is somewhat difficult to understand the interaction between sprays that is initiated in the near-nozzle region within 10 mm from the nozzle exit. In this study, the spray structure, droplet size and velocity data were obtained using an X-ray imaging technique from the near-nozzle to the downstream of the spray to investigate the spray-to-spray interaction and discuss the effects of spray collapse on local droplet size and velocity distribution. It was found that as the ambient density increases, the spray collapse was promoted due to the intensified spray-to-spray interaction, thereby increasing the local droplet size and velocity from the near-nozzle region as a result of droplet collision/coalescence.

A Study on the Separation Minima for Urban Air Mobility in Low-Density Operation Environments (저밀도 운용 환경에서의 도심항공교통 분리 기준에 관한 연구)

  • Hyoseok Chang;Dohyun Kim;Jaewoo Kim;Daniel Kim;Heeduk Cho
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.710-715
    • /
    • 2023
  • Urbanization brings many challenges such as traffic, housing, and environment. To solve these problems, researchers are working on new transportation systems like urban air mobility (UAM). UAM aircraft should fly safely without burdening the existing air traffic system in the early stage of low-density operation. The airspace should also be managed and operated efficiently. Therefore it is important to make urban air traffic predictable by using corridors and collecting data on low-density operations in the early stage. For this purpose various simulations are needed before operation to create scenarios that estimate potential collisions between UAM aircraft and to evaluate the risks of aircraft spacing, loss of separation (LoS), and near mid air collision (NMAC). This paper focuses on identifying the requirements and considerations for setting separation standards for urban air traffic based on the results of studies.

Collision-induced Energy Transfer and Bond Dissociation in Toluene by H2/D2

  • Ree, Jongbaik;Kim, Yoo Hang;Shin, Hyung Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3641-3648
    • /
    • 2013
  • Energy transfer and bond dissociation of $C-H_{methyl}$ and $C-H_{ring}$ in excited toluene in the collision with $H_2$ and $D_2$ have been studied by use of classical trajectory procedures at 300 K. Energy lost by the vibrationally excited toluene to the ground-state $H_2/D_2$ is not large, but the amount increases with increasing vibrational excitation from 5000 and $40,000cm^{-1}$. The principal energy transfer pathway is vibration to translation (V-T) in both systems. The vibration to vibration (V-V) step is important in toluene + $D_2$, but plays a minor role in toluene + $H_2$. When the incident molecule is also vibrationally excited, toluene loses energy to $D_2$, whereas it gains energy from $H_2$ instead. The overall extent of energy loss is greater in toluene + $D_2$ than that in toluene + $H_2$. The different efficiency of the energy transfer pathways in two collisions is mainly due to the near-resonant condition between $D_2$ and C-H vibrations. Collision-induced dissociation of $C-H_{methyl}$ and $C-H_{ring}$ bonds occurs when highly excited toluene ($55,000-70,400cm^{-1}$) interacts with the ground-state $H_2/D_2$. Dissociation probabilities are low ($10^{-5}{\sim}10^{-2}$) but increase exponentially with rising vibrational excitation. Intramolecular energy flow between the excited C-H bonds occurring on a subpicosecond timescale is responsible for the bond dissociation.

A Study of Interaction Effect from Spray Fan Formed by Impinging Jets (충돌분류에 의해 형성된 Spray fan의 간섭효과에 관한 연구)

  • Han, J.S.;Kim, S.J.;Moon, D.Y.;Kim, Y.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.3
    • /
    • pp.9-15
    • /
    • 1999
  • The Analysis of spray characteristics for combined spray group are necessary to develop large rocket engine. In this study, basic effects of interaction from spray fan formed by impinging jets were investigated with respect to mass distribution, droplet velocities and diameter. Patternater and PDPA are used for experimental apparatus. Water was used as a test fluid When momentum ratio is 1, effect of interaction from collision of spray fan on mass distribution are small. Also, effect of interaction from collision of spray fan on droplet velocities and diameter are small. But, droplet diameter is smaller near collision point due to second collision. Therefor, for the same momentum ratio from spray fan formed by impinging jets, we may neglect effect of interaction on mass distribution, droplet velocities and diameter.

  • PDF

Evaluation of Stability in reinforced Earth Retaining Wall by Vehicle Collision (차량 충돌에 의한 보강토 옹벽의 안정성 평가)

  • Ahn, Kwangkuk;Heo, Yol;Hong, Kinam;Ahn, Minsu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.6
    • /
    • pp.39-46
    • /
    • 2010
  • The past studies on reinforced earth retaining wall have been mostly focused on the internal and external failure of reinforced earth retaining wall, and the research for external impact was limited on earthquake. However, the potential external impact such as vehicle collision to reinforced earth retaining wall near the road are increasing with development of roads. Therefore, in this study, the reinforced earth retaining wall was modeled by using LS-DYNA, which is a general purpose finite element program recognized for its reliability. The behavior of reinforced earth retaining wall by vehicle speed was analyzed with Ford single unit truck offered by NCAC (National Crash Analysis Center), which is 8 tons weight. In addition, in order to obtain stability of reinforced earth retaining wall for vehicle collision, the gravity retaining wall was applied at the bottom of reinforced earth retaining wall. With varying the height of retaining wall (0.5m, 1.0m, 1.5m), the numerical study was performed to analyze the stability and behavior of reinforced earth retaining wall.

THE WAVELENGTH OF GRAVITATIONAL WAVES PRODEUCED BY EXTENDED INFLATION

  • LA DAILE
    • Journal of The Korean Astronomical Society
    • /
    • v.28 no.1
    • /
    • pp.67-70
    • /
    • 1995
  • In contrast to conventional belief that extended inflation ends when the Universe percolates, we find inflation may continue at least many Hubble times even after the Universe percolates. What is observed is that inflation will not stop unless the global equation of state changes from inflationary one into radiation one. Thus the energy density of shorter wavelength gravitational waves induced by bubble collision at near the end of inflation should be at least Order $(10^2)\~O(10^3)$ times greater than previous estimation of Turner and Wilcek(TW).

  • PDF

The Design and Implementation of Virtual Studio

  • Sul, Chang-Whan;Wohn, Kwang-Yoen
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1996.06b
    • /
    • pp.83-87
    • /
    • 1996
  • A virtual reality system using video image is designed and implemented. A participant having 2{{{{ { 1} over { 2} }}}}DOF can interact with the computer-generated virtual object using her/his full body posture and gesture in the 3D virtual environment. The system extracts the necessary participant-related information by video-based sensing, and simulates the realistic interaction such as collision detection in the virtual environment. The resulting scene obtained by compositing video image of the participant and virtual environment is updated in near real time.

  • PDF

A Study of P/2010 A2 Dust Cloud : Possibly Impact Triggered Dust Particles

  • Ishiguro, Masateru
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.87.1-87.1
    • /
    • 2010
  • Main-belt comets (hereafter MBCs) are one of the hottest topics in the solar system astronomy. They are objects orbiting in the main asteroid belt which show cometary activity. Unlike most comets, which spend most of their orbit beyond 5AU from the Sun, MBCs follow near-circular orbits within the asteroid belt that are indistinguishable from the orbits of major population of the asteroids. P/2010 A2, the fifth MBC, was discovered by on January 6, 2010 by Lincoln Near-Earth Asteroid Research. It passed its perihelion at 2.01AU on December 3, 2009, about a month before it was discovered. With an aphelion of only 2.6 AU, P/2010 A2 spends all of its time inside of the frostline ~2.7 AU. We made observations of P/2010 A2 with Nishi-Harima Astronomical Observatory 2-m telescope only a week after the discovery. From the observed images, we found that the dust cloud was composed of large particles (>1mm) impulsively ejected between March and June, 2009. No coma was detected by our observations, suggesting that this object was no longer active. Consequently, we conjecture that these dust particles could be released by the impact collision among asteroids.

  • PDF