Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.12.3641

Collision-induced Energy Transfer and Bond Dissociation in Toluene by H2/D2  

Ree, Jongbaik (Department of Chemistry Education, Chonnam National University)
Kim, Yoo Hang (Department of Chemistry, Inha University)
Shin, Hyung Kyu (Department of Chemistry, University of Nevada)
Publication Information
Abstract
Energy transfer and bond dissociation of $C-H_{methyl}$ and $C-H_{ring}$ in excited toluene in the collision with $H_2$ and $D_2$ have been studied by use of classical trajectory procedures at 300 K. Energy lost by the vibrationally excited toluene to the ground-state $H_2/D_2$ is not large, but the amount increases with increasing vibrational excitation from 5000 and $40,000cm^{-1}$. The principal energy transfer pathway is vibration to translation (V-T) in both systems. The vibration to vibration (V-V) step is important in toluene + $D_2$, but plays a minor role in toluene + $H_2$. When the incident molecule is also vibrationally excited, toluene loses energy to $D_2$, whereas it gains energy from $H_2$ instead. The overall extent of energy loss is greater in toluene + $D_2$ than that in toluene + $H_2$. The different efficiency of the energy transfer pathways in two collisions is mainly due to the near-resonant condition between $D_2$ and C-H vibrations. Collision-induced dissociation of $C-H_{methyl}$ and $C-H_{ring}$ bonds occurs when highly excited toluene ($55,000-70,400cm^{-1}$) interacts with the ground-state $H_2/D_2$. Dissociation probabilities are low ($10^{-5}{\sim}10^{-2}$) but increase exponentially with rising vibrational excitation. Intramolecular energy flow between the excited C-H bonds occurring on a subpicosecond timescale is responsible for the bond dissociation.
Keywords
Collision-induced; Dissociation; Intramolecular energy flow;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Cottrell, T. L.; McCoubrey, J. C. Molecular Energy Transfer in Gases; Butterworths: London, 1961: experimental data in Ch. 5 and review of theoretical approaches in Ch. 6.
2 Burnett, G. M.; North, A. M., Eds.; Transfer and Storage of Energy by Molecules, Vol. 2; Wiley: New York, 1969.
3 Smith, I. W. M. in Gas Kinetics and Energy Transfer; Vol. 2, Specialist Periodical Reports; Chemical Society, Burlington House: London, 1977; pp 1-57.
4 Ma, J.; Liu, P.; Zhang, M.; Dai, H.-L. J. Chem. Phys. 2005, 123, 154306.   DOI   ScienceOn
5 Poel, K. L.; Alwahabi, Z. T.; King, K. D. Chem. Phys. 1995, 201, 263.   DOI   ScienceOn
6 Smith, I. W. M.; Warr, J. F. J. Chem. Soc. Faraday Trans. 1991, 87, 807.   DOI
7 Hippler, H.; Otto, B.; Troe, J. Ber. Bunsen-Ges. Phys. Chem. 1989, 93, 428.   DOI
8 Nakashima, N.; Yoshihara, K. J. Chem. Phys. 1983, 79, 2727.   DOI
9 Abel, B.; Herzog, B.; Hippler, H.; Troe, J. J. Chem. Phys. 1989, 91, 900.   DOI
10 Tam, A. C.; Sontag, H.; Hess, P. Chem. Phys. Lett. 1985, 120, 280.   DOI   ScienceOn
11 Wallington, T. J.; Scheer, M. D.; Braun, W. Chem. Phys. Lett. 1987, 138, 538.   DOI   ScienceOn
12 Beck, K. M.; Gordon, R. J. J. Chem. Phys. 1987, 87, 5681.   DOI
13 For a review, see Hsu, H. C.; Tsai, M.-T.; Dyakov, Y. A.; Ni, C.-K. Int. Rev. Phys. Chem. 2012, 31, 201.   DOI
14 Gilbert, R. G. J. Chem. Phys. 1984, 80, 5501.   DOI
15 Toselli, B. M.; Barker, J. R. Chem. Phys. Lett. 1990, 174, 304.   DOI   ScienceOn
16 Lim, K. F. J. Chem. Phys. 1994, 101, 8756.   DOI   ScienceOn
17 Wright, S. M. A.; Sims, I. R.; Smith, I. W. M. J. Phys. Chem. A 2000, 104, 10347.   DOI   ScienceOn
18 Kable, S. H.; Knight, A. E. W. J Phys. Chem. A, 2003, 107, 10813.   DOI   ScienceOn
19 For a review, see Zhang, J. Z. H.; Li, Y. M.; Wang, M. L.; Xiang, Y. Adv. Ser. Phys. Chem. 2004, 14, 209.
20 Fu, B.; Han, Y.-C.; Bowman, J. M.; Leonori, F.; Balucani, N.; Angelucci, L.; Occhiogrosso, A.; Petrucci, R.; Casavecchia, P. J. Chem. Phys. 2012, 137, 22A532.
21 Dagdigian, P. J. Int. Rev. Phys. Chem. 2013, 32, 229.   DOI
22 Ree, J.; Kim, S. H.; Lee, S. K. J. Bull. Kor. Chem. Soc. 2013, 34, 1494.   DOI   ScienceOn
23 Toselli, B. M.; Brenner, J. D.; Yerram, M. L.; Chin, W. E.; King, K. D.; Barker, J. R. J. Chem. Phys. 1991, 95, 176.   DOI
24 Damm, M.; Deckert, F.; Hippler, H.; Troe, J. J. Phys. Chem. 1991, 95, 2005.   DOI
25 Lenzer, T.; Luther, K.; Troe, J.; Gilbert, R. G.; Lim, K. F. J. Chem. Phys. 1995, 103, 626.   DOI   ScienceOn
26 Bernshtein, V.; Lim, K. F.; Oref, I. J. Phys. Chem. 1995, 99, 4531.   DOI   ScienceOn
27 Shin, H. K. J. Phys. Chem. A 2000, 104, 6699.   DOI   ScienceOn
28 Elioff, M. S.; Fang, M.; Mullin, A. S. J. Chem. Phys. 2001, 115, 6990.   DOI   ScienceOn
29 Ree, J.; Kim, Y. H.; Shin, H. K. J. Chem. Phys. 2002, 116, 4858.   DOI   ScienceOn
30 Ree, J.; Kim, Y. H.; Shin, H. K. Chem. Phys. Lett. 2004, 394, 250.   DOI   ScienceOn
31 Ree, J.; Kim, S. H.; Lee, T. H.; Kim, Y. H. Bull. Kor. Chem. Soc. 2006, 27, 495.   DOI   ScienceOn
32 (a) Hippler, H.; Troe, J.; Wendelken, H. J. Chem. Phys. Lett. 1981, 84, 257.   DOI   ScienceOn
33 (b) Hippler, H.; Troe, J.; Wendelken, H. J. J. Chem. Phys. 1983, 78, 5351; 78, 6709; 78, 6718.
34 (c) Hippler, H.; Troe, J.; Wendelken, H. J. J. Chem. Phys. 1984, 80, 1853.   DOI
35 (a) Bernshtein, V.; Oref, I. J. Phys. Chem. A 2006, 110, 8477.   DOI   ScienceOn
36 (b) Bernshtein, V.; Oref, I. J. Phys. Chem. B 2005, 109, 8310.   DOI   ScienceOn
37 (c) Bernshtein, V.; Oref, I. J. Phys. Chem. A 2006, 110, 1541.   DOI   ScienceOn
38 Berkowitz, J.; Ellison, G. B.; Gutman, D. J. Phys. Chem. 1994, 98, 2744.   DOI   ScienceOn
39 Weast, R. C., Ed., CRC Handbook of Chemistry and Physics, 67th ed., CRC Press; Boca Raton, FL: 1986 see p. F-194.
40 Barone, V.; Fliszar, S. J. Mol. Struc. (Theochem) 1996, 369, 29.   DOI   ScienceOn
41 Guan, Y.; Thompson, D. L. J. Chem. Phys. 1990, 92, 313.   DOI
42 Lapouge, C.; Cavagnat, D. J. Phys. Chem. A 1998, 102, 8393.   DOI   ScienceOn
43 Kjaergaard, H. G.; Turbull, D. M.; Henry, B. R. J. Phys. Chem. A 1997, 101, 2589.   DOI   ScienceOn
44 Kjaergaard, H. G.; Turnbull, D. M.; Henry, B. R. J. Phys. Chem. A 1998, 102, 6095.   DOI   ScienceOn
45 http://webbook.nist.gov/chemistry/name-ser.html (Accessed Aug. 13, 2013)
46 Lim, K. F. J. Chem. Phys. 1994, 100, 7385.   DOI   ScienceOn
47 Hirschfelder, J. O.; Curtiss, C. F.; Bird, R. B. Molecular Theory of Gases and Liquids; Wiley: New York, 1967; see p. 168 for the combining laws, pp. 1110-1112 and 1212-1214 for D and a, respectively.
48 Xie, Y.; Boggs, J. E. J. Comp. Chem. 1986, 7, 158.   DOI
49 Olney, T. N.; Cann, N. M.; Cooper, G.; Brion, C. E. Chem. Phys. 1997, 223, 59.   DOI   ScienceOn
50 Huber, K. P.; Herzberg, G. Constants of Diatomic Molecules; Van Nostrand Reinhold: New York, 1979.
51 Gear, C. W. Numerical Initial Value Problems in Ordinary Differential Equations; Prentice-Hall: New York, 1971.
52 MATH/LIBRARY, Fortran Subroutines for Mathematical Applications; IMSL: Houston, 1989; p 640.