The Design and Implementation of Virtual Studio*

ChangWhan Sul, Kwang-Yoen Wohn
(Dept. of Computer Science, KAIST)

Abstract: A virtual reality system using video image is designed and implemented. A participant having Z%DOF can
interact with the computer-generated virtual object using her/his full body posture and gesture in the 3D virtual environment.
The system extracts the necessary participant-related information by video-based sensing, and simulates the realistic interaction
such as collision detection in the virtual environment. The resulting scene obtained by compositing video image of the participant

and virtual environment is updated in near real time,

1 INTRODUCTION

1.1 Reflezive VR

Using live video images of participants in a VR system is
not a new idea. Since the remarkable work of Krueger[3],
couple of similar applications have been developed in both
entertainment [8], [9] and academic domains{4]. The ad-
vancement of image processing and computer graphics tech-
nologies enabled these Reflezive VR systems to shift to
more realistic 3 dimensional virtual world and richer inter-
actions. In reflexive VR systems, one or more video cam-
eras replace position / orientation sensors, mouse or key-
board, while a large projection screen replaces HMD's and
sterec glasses. A typical setting is depicted in Fig.1. The

(£ =0

Fig. 1. Configuration for Reflexive VR system

configuration has numbers of advantages over traditional
{immersive) VR such as unencumbered interface, full-body
interaction and no motion sickness while baving disadvan-
tages such as coarse resolution and limited interaction. Due
to the characteristics of reflexive VR, application areas such
as LBE and computer-generated studios in broadcasting are
considered suitable and promising,.

*This work was supported partially by Center for AI Research,
KAIST

1.2 Related works

In Videoplace(3],the first attempt to realize the idea of
reflexive VR, Krueger demonstrated the potentials of re-
flexive VR as a new communication media. The partic-
ipants were self-represented by their silhouettes, and the
underlying virtual environment(VE) was a flat, two dimen-
sional space inhabited by simple flat objects. Mandala(g]
from Vivid was an extension of Videoplace in that it repre-
sented participants by their video image, while still having
flat objects. Major restrictions of these two ancestors of
today's reflexive VR was that they only supported two di-
mensional virtual space and objects. Therefore the interac-
tion between participants and virtual worlds was inherently
bound to their 2D-nature.

Recently however, emerging technologies such as
IVE(Interactive Video Environment) from MIT{4], (2] and
‘Virtual Set’[1] from SGI are extending the virtual space,
objects and interactions within the space to near three di-
mensional ones, broadening application area of reflexive
VR. Video images of the participants captured by video
camera are composited to images of 3D VE inhabited by
3D objects and agents, and participants are able to interact
within the VE using their full body motions and gestures,

With rapidly growing image processing and generation
power of computers, reflexive VR, technology is opening new
opportunities not only to computer engineers, but game
designers, broadcasters and film makers.

By combining basic computer vision techniques and vir-
tual reality system we developed(5), we have designed and
implemented a prototype of reflexive VR system which is
based on analysis of video image of the participant. In the
following, the structure of the system, the method used for
image analysis and experimental results will be described.

2 DESIGN oF REFLEXIVE VR SYSTEM

In order to interact with participants, any VR system
ought 1o have subsystems for input processing, VE simu-
lation and output generation. Input processing subsystem
extracts the intention of the participants by analyzing raw
sensor data. VE simulation subsystem simulates the inter-
actions between participants and virtual objects, between
virtual objects and implicit rules of VE such as gravity,
thereby changes descriptions of VE properly. Output gen-

83

A

| Puticepunt © |

Virtual World
Simulative modute

Virtual Workd
Dutabiase

Senxory Info,
1 Cenengion module

..

Dungee

Fig. 2. Flow diagram of the system

eration subsystem renders the status of VE at each frame,
generating sensory signals such as images and sounds.

Reflexive VR system differs from its immersive counter-
part at input and output subsystems. In the input subsys-
tem, video camera replaces position/orientation trackers,
data gloves, wands, joysticks, mouse or keyboard. Most
of information on the intention of participant is extracted
from the video image. In the output subsystem, in addition
to rendering the scene in VE by computer graphics tech-
niques, compositing video image of the participants must
be taken into consideration.

Overall flow of the system is shown in Fig.2. In the cur-
rent design, we assume a single participant. The video
image of the participant is fed into the participant sensing
module to extract the relevant information from the par-
ticipant’s physical posture and gesture. This information
is then transformed into the data on the surrogated agent
which represents the participant in virtual world. Along
with the surrogated agent data, data of virtual worlds de-
scribing virtual objects, camera, lights and behaviors are
processed and updated by the virtual world simulation
module. The updated data is then transformed into proper
visual and auditory information, giving feedback to partic-
ipant. Each modules will be described later in detail.

2.1 24D Virtual space & interaction model

The necessary information for interactions between sur-
rogated agent and VE comes from two different sources.
The information for the surrogated agent can be obtained
by analyzing video image. The information for VE is sup-
plied from the virtual world database, application scenario,
ete. The two types of information, one being 2D pixels
and the other being 3D digital data, are not compatible to
each other, Therefore we map the video image into 3D-
compatible data by our simple 23D model. To simplify the
computation, we assume following conditions:

« The camera is fixed.
« The participant maintains the pose facing the camera
at right angle.

~

% \‘*\W%
e .
.Sm’mgnt&f\
Agent

.MM*__“____A_A___,
N

2y

!
1
i
Fig. 3. 2%D model of participant and surrogated agent

« At any time, at least one body part of the participant
touches the floor.
¢ The participant does not move too quickly.

In our model, the participant is represented by a bitmap
on a plane P, moving in real world coordinate as partici-
pant moves. The direction of 7, is fixed, to the direction
of the participant moving back and forth about the camera,
le, F; always has the form z, = depth(t). (see Fig.3).
Therefore the dimension of the virtual space inhabited by
our participant may be regarded as lying at somewhere be-
tween 2 and 3. Surrogated agent, self of the participant in
VE, is also represented by a bitmap on the plane P, moving
in VE. The movement of P, and P, are tightly related.

Ail objects in VE but the surrogated agent preserve their
own dimension, namely the full 3D. The resulting VE is 3D
space occupied by 3D objects and 25D surrogated agent.

Among many levels of interaction,[6] physical interaction
level which includes navigation and collision is adopted in
our model.

Q%D navigation is obvious from the model. We define
collision between 21D surrogated agent and 3D object as
the intersection between bitmap of the surrogated agent and
the bounding box of the object as in Fig.4.

2.2 Participant Sensing

The participant sensing module analyzes videc image of
the participant, updates participant model so that he can in-
teract in VE. As the first step, the region that belongs to the
background is removed from the input image. Separation
of the foreground from background pixels can be performed
by using either special hardware or by software. The first
option, using hardware, is called chroma keying and unsed
widely in broadcasting and film industry. The other op-
tion varies from simple method based on frame difference
to the relatively complicated statistical approach{10]. De-
spite the cost of setting homogeneous background and the

Surroguted

Agent

chject's
Bounding box

Fig. 4. 24D collision

pre-calculated
camera parameters

Position Tracking
-

Fig. 5. Flow diagram of participant sensing

need for carefully controlled illumination, the first option is
preferred to save the computation.

From the 2D bounding rectangle which encloses the fore-
ground pixels, a bounding rectanglein 2 lispace in real world
is obtained by exploiting the assumptions we have made in
section 2.1. Mapping from the 2D image plane to the 3D
VE is accomplished by using the pre-calculated camera pa-
rameters[7]. More detailed diseussion is in order.

Without loosing generality, we set y. = 0 for the floor
and by the third assumption in 2.1, the lowest part of the
bounding rectangle always satisfies y, = 0. We can deter-
mine a unique point among many points satisfying inverse
camera projection equation and Py is determined from that
point. Let ABCD be the 2D bounding rectangle for fore-
ground pixels and A' B'C" D' be the 2%D bounding rectangle
for participant as in Fig.6. Camera projection is expressed
by

Pf'.i(-'ﬂr,?/n 27y T, R: f} K1, Ky, Cza Cy) - (miayi)

where T, R. f, k1, 1y, Cr, Cy are the camera parameters as
defined in {7]. Since Prj does not have inverse, we define
set Pri~!as

PTJHI('TI'yt) = {(-Ir-y‘razf') E Prj(zrsyrszr) = (mi,yi“

Fig. 6. Position determination

Then, the coordinate of point A’ is given by
(ITA' T ¥ran er') = Prj—l (xiAs yiA)n{(Irv Yrs zr) i Yr = 0}

From the z, value satisfying above, we get the plane FP,.
Other peints B',C’, D' are obtained from intersection of
Prj~! and P,. Position of the participant is defined by
mid-point of A’ and B’

Along with the position, the posture of the participant
is used for interaction. A posture is defined by a binary
template. Postures are tested by matching sub-sampled
foreground image with the template. If there are more than
one template whose score is higher than threshold value,
one with the highest matching score is selected as the cur-
rent posture. For stability, a posture must be selected in n
subsequent frames to be activated (n is programmable).

Participant data, output of the participant sensing mod-
ule, consists of the foreground bitmap, 2-12;13 bounding rect-
angle in real world representing global position and posture
number.

2.3 Surrogated agent control

Surrogated agent is controlled by the real world partic-
ipant. By adding one layer of mapping from participant
to surrogated agent, many interesting effect such as mir-
roring, distortion or exaggeration of movement of partici-
pant is possible, thereby alleviates restrictions in partici-
pant movement which is governed by the physical laws in
real world. Surrogated agent control consists of two parts:
appearance control and position control. For the appear-
ance control, the way the surrogated agent looks in VE
is controlled. Local parameters such as color and trans-
parency can be changed whenever needed and a global dis-
guise function will turn the bitmap of the participant to
the bitmap of another agent. As for ghe position control,
the displacement of the participant AP = {Az,, Ay,,Az,)
is mapped to the displacement of the surrogated agent
AP = (Az,, Ay, Az,) by

AP = (f,(Az,), £ (D), f:(A2.) + AG,

where AQ is the programmable displacement that does not
depend on the displacement in real world and f;, fy, f:
are the displacement mapping functions. In most cases,
f=(0) = fu(0) = £.(0) = 0, f. and f, are non-decreasing
and f, 18 non-increasing for the mirroring effect.

85

2.4 VE simulation

We update the status of VE in a frame-based fashion. At
each frame, input processing module, VE simulation mod-
ule and output generation module are executed in sequence.
In simulation module, behavior description functions of all
cbjects in VE are cailed one by one. The behavior descrip-
tion function is a small subroutine associated to one or more
active objects. By these functions, the status of the cur-
rent VE including informations on objects, lights, virtual
camera, surrogated agent can be referred to and changed.
These functions will respond to the participant by detecting
the input event such as collision, position change and pos-
ture activation, updating the internal status of the objects
under consideration.

2.5 Qutput generation

As the result of VE simulation, the status of VE is up-
dated every frame, and the resulting VE should be ren-
dered into visual and auditory data, giving participants
sensory feedback. For visual processing, the traditional
keying method of compositing two scenes is not applicable
since we're dealing with 3D objects, not two 2D images.
In our system, the image of the surrogated agent, which
is the bitmap of the participant in most cases, is compos-
ited with the image of VE using an algorithm analogous to
Z-buffer rendering. At first, the scene of VE is rendered
with a conventional rendering method. Z-buffering, either
implemented in hardware or software, is a commonly used
technique for 3D computer graphics. When rendering of
all visible objects in VE is done, the Z-buffer contains the
distance to closest object from viewpeint. Using this, the
bitmap with Z value determined by the plane P, is rendered
pixel-wisely. The result will be an image of the surrogated
agent in VE, properly occluded by objects closer to view-
point than the agent, and properly occluding objects farther
than the agent.

For sound rendering, a MIDI file or sampled sound is
played when sound event is triggered by the application
program.

3 IMPLEMENTATION

The system is implemented on top of VRAT (Virtual Re-
ality Authoring Toolkit) which is a set of library functions
and tools for authoring and execution of multiple user VR
application developed in KAIST[5]. A VRAT application
can be executed basically on any platform that is capable
of running X-Windows system, such as Sun workstations,
Linux-running PC's. Besides, it can be executed on SGI to
achieve faster and higher quality rendering. Users of VRAT
write their application in C using standard API, link with
VRAT library to get an executable. VRAT library consist
of device drivers, renderers, main simulation loop, network
commaunications, and various query & set functions.

Currently, the system is running only on Linux-based PC
platform mainly for availability of low cost frame grabbing
hardware. Additional modules were added to VRAT for
reflexive VR application. They include 2%D collision de-

F—
VRAT T
Apphication

Metif GUI1 Application

—

Virtuz! World Simulation Loop

Task &

VR Toolkit
i Simubation

Virtusl World
Diatubase

X-window

; Sun PIXRECT

Linux VGA | SGIGL

Fig. 7. Software structure of VRAT

Fig. 8. Experiment settings

tection and participant sensing from video image such as
position tracking, posture recognition, etc. The software
structure of VRAT is shown is Fig.7 and the shaded part
is newly added for the reflexive VR.

Application programmers are provided with API’s for re-
flexive VR: they can query the current position and size of
the bounding rectangle, move or resize the bounding rect-
angle to explicitly control surrogated agent, register func-
tions for position control{ fz, fy, f: mentioned in section
2.3), and check intersection between the surrogated agent
and virtual objects. They can define the posture template
of their own and register a callback functions to be called
when the posture is activated.

A simple chroma keying box, blue screen and
Targa+ frame grabber are used for participant sensing
module(Fig.8). Camera parameters are obtained by Tsai's
co-planar calibration method|7]. The average performance
is about 5 frames per second, for small number of polygons
in VE. Examples of reflexive VR application is shown in
Fig.9.

4 SUMMARY

We have developed a prototype reflexive VR on top of
the existing VR toolkit. Live video image of the partic-
ipant is analyzed and used for the interaction in virtual
environment. Simple techniques from computer vision and
pattern recognition are combined to produce basically re-

Fig. 9. Reflexive VR application

quired functionalities.

Our future works includes: more intelligent gesture and
posture analysis, extension to the dynamic environment in
which the camera moves, improvement of video processing
bath in speed and quality.

REFERENCES

(1] http://www.studio.sgi.com/ Features/VirtualSets/intro.Atml.

i 1 Trevor Darrell, Pattie Maes, Bruce Blumberg, and Alex P. Pent-
land, A Novel Environment for Sltuated Vision and Behavior,
Tech. Report Perceptual Computing TR-261, MIT Media Labo-
ratory, 1994.

3] Myron W. Krueger, Artificial Reality FI, Addison-Wesley, 1990.

4] Pattie Maes, ALIVE: An Artificial Life Interactive Video Envi-
ronments, Computer Graphics Visual Processing, ACM Press,
1993,

[5] Unjae Sung, Sonou Lee, and Kwangyoen Wohn, The Design and
Implementation of Virtual Reslity Authoring Tool, Proceedings
of the 21st KISS Fall Conference, KISS, 1994.

[6] Unjae Sung and Kwangyoen Wohn, 4 Layered Interaction Model
jor the Virtual Environment, Tech. Report CAIR-TR-94-58,
CAIR,KAIST, 1994.

7] Roger Y. Tsai, An Efficient and Accurate Camera Calibration
Technique for 3D Machine Vision, CVPR, 1936,

[8] Steve Warme, Mandala sport simulators, Virtual Reality Warld
2 (1994), no. 5, 44-49.

{9] Steve Warme, The Mandgle Virtual World System, or, virtual
reality-ne strings atiached, Virtual Reality World 2 (1994}, no. 2,
45-71.

{10} Christopher Wren, Al Azarbayejani, Trevor Darrell, and Alex
Pentland, Pfinder: Real-Time Tracking of the Human Body,
Tech. Report Perceptual Computing TR-353, MIT Media Labo-
ratory, 1994.

87

