• Title/Summary/Keyword: NbC

Search Result 1,384, Processing Time 0.025 seconds

Study on Heterogeneous Structures and High-Frequency Magnetic Properties Amorphous CoZrNb Thin Films (비정질 CoZrNb 박막의 불균일 구조와 고주파 자기특성에 관한 연구)

  • 정인섭;허재헌
    • Journal of the Korean Magnetics Society
    • /
    • v.1 no.2
    • /
    • pp.31-36
    • /
    • 1991
  • Structural and compositional heterogeneities of sputter deposited, amorphous $Co_{87}Zr_{4}NB_{9}$ thin films were investigated using TEM and EDS with windowless detector. The films deposited with substrate bias and annealed in rotating magnetc field showed two amorphous phases of Co-rich region and (ZrNb)oxide-rich region, and revealed 'ultra-soft' magnetic properties. Revesible bias-responses and overdamped frequency responses, along with small Hc, Hk and Mr/Ms ratio, give the possibility of ultra-soft magnetic behavior fo CoZrNb thin films. We proposed the vortex type magnetization distribution in remanent state which was correlated with the thin film heterogeneity. Then, the ultra-soft characteristics of the compositionally heterogeneous films were explained by the spin vortices that minimized the total magnetostatic and exchange coupling energies.

  • PDF

Dielectric and Piezoelectric Characteristics of $0.95(K_{0.5}Na_{0.5})NbO_3$-0.05Li$(Sb_{0.8}Nb_{0.2})O_3$ Ceramics with the amount of $MnO_2$ addition ($MnO_2$ 첨가에 따른 $0.95(K_{0.5}Na_{0.5})NbO_3$-0.05Li$(Sb_{0.8}Nb_{0.2})O_3$ 세라믹스의 유전 및 압전특성)

  • Kim, Do-Hyung;Yoo, Ju-Hyun;Kim, In-Sung;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.172-173
    • /
    • 2008
  • In this study, $0.95(K_{0.5}Na_{0.5})NbO_3$-0.05Li$(Sb_{0.8}Nb_{0.2})O_3$ + $Ag_2O$ + x wt% $MnO_2$ were investigated as a function of the amount of $MnO_2$ addition in order to improve dielectric and piezoelectric properties of Lead-free piezoelectric ceramics. With increasing the amount of $MnO_2$ addition, density and electromechanical coupling factor $(k_p)$ increased up to 0.3wt.% $MnO_2$ and decreased above 0.3wt.% $MnO_2$. At the sintering temperature of 1020 $^{\circ}C$, Electromechanical coupling factor $(k_p)$, density, dielectric constant $({\varepsilon}r)$ and mechanical quality factor $(Q_m)$ of composition ceramics with 0.4wt% $Ag_2O$ addition showed the optimal value of 0.431, 4.33 g/$cm^3$, 820 and 119, respectively.

  • PDF

Hardness and EDM Processing of MoSi$_2$Intermetallics for High Temperature Ship Engine (고온선박엔진용 MoSi$_2$금속간화합물의 경도와 방전가공특성)

  • 윤한기;이상필
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.6
    • /
    • pp.60-64
    • /
    • 2002
  • This paper describes the machining characteristics of the MoSi$_2$--based composites through the process of electric discharge drilling with various tubular electrodes. In addition to hardness characteristics, microstructures of Nb/MoSi$_2$laminate composites were evaluated from the variation of fabricating conditions, such as preparation temperature, applied pressure, and pressure holding time. MoSi$_2$-based composites have been developed in new materials for jet engines of supersonic-speed airplanes and gas turbines for high-temperature generators. These high performance engines may require new hard materials with high strength and high temperature-resistance. Also, with the exception of grinding, traditional machining methods are not applicable to these new materials. Electric discharge machining (EDM) is a thermal process that utilizes a spark discharge to melt a conductive material. The tool electrode is almost -unloaded, because there is n direct contact between the tool electrode and the work piece. By combining a non-conducting ceramic with more conducting ceramic, it was possible to raise the electrical conductivity. From experimental results, it was found that the lamination from Nb sheet and MoSi$_2$ powder was an excellent strategy to improve hardness characteristics of monolithic MoSi$_2$. However, interfacial reaction products, like (Nb, Mo)SiO$_2$and Nb$_2$Si$_3$formed at the interface of Nb/MoSi$_2$, and increased with fabricating temperature. MoSi$_2$composites, with which a hole drilling was not possible through the conventional machining process, enhanced the capacity of ED-drilling by adding MbSi$_2$, relative to that of SiC or ZrO$_2$reinforcements.

Effects of phase changes on mechanical properties of Ti-Nb alloys (Ti-Nb계 합금의 상변화가 기계적 성질에 미치는 영향)

  • Park, Hyo-Byeong
    • Journal of Technologic Dentistry
    • /
    • v.27 no.1
    • /
    • pp.9-17
    • /
    • 2005
  • The use of titanium alloys as biomaterials is increasing due to their superior biocompatibility and enhanced corrosion resistance compared to conventional stainless steels and cobalt-based alloys. Ti-6Al-4V ($\alpha+\beta$type) alloy instead of pure titanium ($\alpha$type) is being widely used as biomaterials has some characteristics such as high fatigue strength, tensile strength and corrosion resistance. But it has been reported recently that the vanadium element expresses cytotoxicity and the aluminium element is related with dementia of Alzheimer type and neurotoxicity. In order to overcome their detrimental effects, $\beta$-phase stabilizer Nb was chosen in the present study. This paper was described the influence of phase changes of Ti-Nb alloys on mechanical properties. Ti-3wt.%Nb($\alpha$type),Ti-20wt.%Nb($\alpha+\beta$type) and Ti-40wt.%Nb($\beta$type) alloys were melted by vacuum arc furnace. The specimens were homogenized at 1050$^{\circ}C$ for 24hr and were then hot rolled to 50% reduction. Each alloys were solution heat treated at $\beta$ zone and $\alpha+\beta$ zone after homogenization and then were aged. The mechanical properties of Ti alloys were analysed by hardness test, tensile test, elongation test and SEM test. The results can be summarized as follows: 1) The higher hardness value of $\alpha+\beta$type alloy was obtained compared to the, $\alpha,\beta$type alloys. 2) The aged treated showed better hardness compared to the solution heat treated, homogenized. 3) In the case of solution and aging treatment at $\beta$region, the $\alpha+\beta$type alloy showed the most highest tensile strength and $\beta$type alloy showed the best elongation.

  • PDF

A Correlation of Striation Spacing and DHC Velocity in Zr-2.5Nb Tubes (Zr-2.5Nb 압력관에서 Striation Spacing과 DHCV의 관계)

  • Choi Seung Jun;Ahn Sang Bok;Park Soon Sam;Kim Young Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1109-1115
    • /
    • 2004
  • The objective of this study is to elucidate what governs delayed hydride cracking (DHC) in Zr-2.5Nb tubes by correlating the striation spacings with DHCV(DHC Velocity). To this end, DHC tests were conducted on the compact tension specimens taken from the Zr-2.5Nb tubes at different temperatures ranging from 100 to $300^{\circ}C$ with a 3 to 6 data set at each test conditions. The compact tension specimens were electrolytically charged with 27 to 87 ppm H before DHC tests. After DHC tests, the striation spacings and DHCV were determined with the increasing the test temperature and yield strength. The striation spacing and DHCV increased as a function of yield $strength^2$ and the temperature. Since the plastic zone size ahead of the crack tip can be represented by ${\sim}(K_{IH}/{\sigma}_{Y})^2$, we conclude that the striation spacing is governed by the plastic zone size which in turn determines a gradient of hydrogen concentration at the crack tip. The relationship between the plastic zone size and the striation spacing was validated through a complimentary experiment using double cantilever beam specimens. Two main factors to govern DHCV of Zr-2.5Nb tubes are concluded to be hydrogen diffusion and a hydrogen concentration gradient at the crack tip that are controlled by temperature and yield strength, respectively. The activation energy of DHCV in the Zr-2.5Nb tubes is discussed on the basis of temperature dependency of hydrogen diffusion and the striation spacing.

The Effect of HEMM on Microstructure and Mechanical Properties of Ti-Nb Alloy for Implant Biomedical Materials (생체의학 임플란트재료로서 Ti-Nb계 합금의 조직과 기계적 성질에 미치는 HEMM의 영향)

  • Woo, Kee-Do;Choi, Gab-Song;Lee, Hyun-Bum;Kim, In-Yong;Zhang, Deliang
    • Korean Journal of Materials Research
    • /
    • v.17 no.11
    • /
    • pp.587-592
    • /
    • 2007
  • Al-42wt%Nb powder was prepared by high-energy mechanical milling(HEMM). The particle size, phase transformation and microstructure of the as-milled powder were investigated by particle size distribution (PSD) analyzer, scanning electron microscopy (SEM), X-ray diffractometery (XRD), transmission electron microscopy (TEM)and differential thermal analysis (DTA). The milled powders were heated to a sintering temperature at 1000C with under vaccum with vaccum tube furnace. Microstructural examination of sintered Ti-42wt%Nb alloy using 4h-milled powder showed Ti-rich phases (${\alpha}$-Ti) which are fine and homogeneously distributed in the matrix (Nb-rich phase: ${\beta}$-Ti). The sintered Ti-42wt%Nb alloy with milled powder showed higher hardness. The microstructure of the as quenched specimens fabricated by sintering using mixed and milled powder almost are same, but the hardness of as quenched specimen fabricated by using mixed powder increased due to solution hardening of Nb in Ti matrix. The aging effect of these specimens on microstructural change and hardening is not prominent.

Magnetic Properties of $\alpha$-Fe Based Nd-Fe-B Nanocrystalline with High Remanence (고잔류자화 $\alpha$-Fe기 Nd-Fe-B 초미세결정립 합금의 자기특성)

  • 조용수;김윤배;박우식;김창석;김택기
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.1
    • /
    • pp.38-41
    • /
    • 1995
  • The effects of Nb and Cu additives as will as substitutional Co into $Nd_{4}Fe_{85.5}B_{10.5}$ melt-spun alloy were studied aiming for finding a $\alpha$-Fe based Nd-Fe-B composite alloys with high energy product. The addition of Nb and Cu to $Nd_{4}Fe_{85.5}B_{10.5}$ decreased the average grain size and increased the coercivity up to 207kA/m(2.6kOe), Further-more, the substitution of Co for Fe in $Nd_{4}Fe_{82}B_{10}Nb_{3}Cu_{1}$ alloy resulted in the decrease of the average grain size (<20nm) and improved the hard magnetic properties. The remanence, coercivity and energy product of optimally annealed $Nd_{4}Fe_{74}Co_{8}B_{10}Nb_{3}Cu_{1}$ alloy were 1.345, 219kA/m(2.75kOe) and $95.5kJ/m^{3}$(12MGOe), respectively.

  • PDF

Microstructure and Biocompatibility of Ti-Nb-Si-HA Composites Fabricated by Rapid Sintering Using HEMM Powders

  • Woo, Kee-Do;Kim, Sang-Hyuk;Kang, Dong-Soo;Kim, Dong-Gun
    • Korean Journal of Materials Research
    • /
    • v.23 no.7
    • /
    • pp.353-358
    • /
    • 2013
  • To improve coating ability and the life of the coating, Ti based composite materials with hydroxyapatite(HA) should be developed. The raw materials of Ti-26wt%, Nb-1wt%, and Si with 10wt% HA were mixed for 24 h by a mixing machine and milled for 1 h to 6 h by planetary mechanical ball milling. Ti-26%Nb-1%Si-(10%HA) composites, composed of nontoxic elements, were fabricated successfully by spark plasma sintering(SPS) at $1000^{\circ}C$ under 70MPa. The relative density of the sintered Ti-Nb-Si-HA composites using the 24 h mixed powder, and the 6 h milled powder, was 91% and 97 %, respectively. The effects of HA contents and milling time on microstructure and mechanical properties were investigated by SEM and hardness tester, respectively. The Vickers hardness of the composites increased with increasing milling time and higher HA content. The Young's modulus of the sintered Ti-26%Nb-1%Si-10%HA composite using the 6 h-milled powder was 55.6 GPa, as obtained by compression test. Corrosion resistance of the Ti-26wt%Nb-1wt%Si composite was increased by milling and by the addition of 10wt%HA. Wear resistance was improved with increasing milling time. Biocompatibility of the Ti-Nb-Si alloys was improved by the addition of HA.

DNA Dynamics: a Fluorescence Resonance Energy Transfer Study Using a Long-Lifetime Metal-Ligand Complex

  • Kang, Jung-Sook;Lakowicz, Joseph-R.;Piszczek, Grzegorz
    • Archives of Pharmacal Research
    • /
    • v.25 no.2
    • /
    • pp.143-150
    • /
    • 2002
  • Fluorescent probes bound to DNA typically display nanosecond decay times and reveal only nanosecond motions. We extend the time range of measurable DNA dynamics using $[Ru(pby)_2(dppz)]^{2+}$ (bpy=2.2'-bipyridine, dppz=dipyrido[3,2-a2',3'-c]phenazine) (RuBD) which displays a mean lifetime near 90 ns. To test the usefulness of RuBD as a probe for diffusive processes in calf thymus DNA, we compared the efficiencies of fluorescence resonance energy transfer (FRET) using three donors which display lifetimes near 5 ns for acridine orange (AO), 22 ns for ethidum bromide (EB) and 92 ns for RuBD, with nile blue (NB) as the acceptor. The F rster distances for AO-NB, EB-NB and RuBD-NB donor-acceptor pairs were 42.3, 52.3, and $30.6{\;}{\AA}$, respectively. All three donors showed dramatic decreases in fluorescence intensities and more rapid intensity decays with increasing NB concentrations. The intensity decays of AO and EB in the presence of varying concentrations of NB were satisfactorily described by the one-dimensional FRET model without diffusion (Blumen and Manz, 1979). In the case of the long-lifetime donor RuBD, the experimental phase and modulation somewhat deviated from the recovered values computed from this model. The recovered NB concentrations and FRET efficiencies from the model were slightly larger than the expected values, however, the recovered and expected values did not show a significant difference. Thus, it is suggested that the lifetime of RuBD is too short to measure diffusive processes in calf thymus DNA.

The Characterization of Nb3Ge by Slow Positron Annihilation Spectroscopy (저에너지 양전자 소멸 분광법을 이용한 Nb3Ge 박막 특성)

  • Lee, C.Y.;Bae, S.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.6
    • /
    • pp.489-494
    • /
    • 2010
  • Enhance signal-to-noise ratio, slow positron coincidence Doppler Broadening method has been applied to study of characteristics of $Nb_3Ge$ superconductor film, which were performed from 20 K to 300 K sample temperature near Tc of it. In this investigation the numerical analysis of the Doppler spectra was employed to the determination of the shape parameter, S, defined as the ratio between the amount of counts in a central portion of the spectrum and the total counts of whole spectrum. The S-parameter values between 0.598 and 0.594 were decreased while the temperature were decreasing, that indicated the voids into the samples. The temperature dependence came from specific positron trapping rate into the vacancy-type defects. It is believed that the positrons annihilate with normal-electrons instead of super-electrons in the Nb3Ge superconductor.