Browse > Article

DNA Dynamics: a Fluorescence Resonance Energy Transfer Study Using a Long-Lifetime Metal-Ligand Complex  

Kang, Jung-Sook (Department of Oral Biochemistry and Molecular Biology, College of Dentistry and Research Institute for Oral Biotechnology, Pusan University)
Lakowicz, Joseph-R. (Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine)
Piszczek, Grzegorz (Institute of Experimental Physics, University of Gdansk, ul.)
Publication Information
Archives of Pharmacal Research / v.25, no.2, 2002 , pp. 143-150 More about this Journal
Abstract
Fluorescent probes bound to DNA typically display nanosecond decay times and reveal only nanosecond motions. We extend the time range of measurable DNA dynamics using $[Ru(pby)_2(dppz)]^{2+}$ (bpy=2.2'-bipyridine, dppz=dipyrido[3,2-a2',3'-c]phenazine) (RuBD) which displays a mean lifetime near 90 ns. To test the usefulness of RuBD as a probe for diffusive processes in calf thymus DNA, we compared the efficiencies of fluorescence resonance energy transfer (FRET) using three donors which display lifetimes near 5 ns for acridine orange (AO), 22 ns for ethidum bromide (EB) and 92 ns for RuBD, with nile blue (NB) as the acceptor. The F rster distances for AO-NB, EB-NB and RuBD-NB donor-acceptor pairs were 42.3, 52.3, and $30.6{\;}{\AA}$, respectively. All three donors showed dramatic decreases in fluorescence intensities and more rapid intensity decays with increasing NB concentrations. The intensity decays of AO and EB in the presence of varying concentrations of NB were satisfactorily described by the one-dimensional FRET model without diffusion (Blumen and Manz, 1979). In the case of the long-lifetime donor RuBD, the experimental phase and modulation somewhat deviated from the recovered values computed from this model. The recovered NB concentrations and FRET efficiencies from the model were slightly larger than the expected values, however, the recovered and expected values did not show a significant difference. Thus, it is suggested that the lifetime of RuBD is too short to measure diffusive processes in calf thymus DNA.
Keywords
Fluorescence resonance energy transfer; Long-lifetime metal-ligand complex; Diffusion in DNA; Frequency-domain fluorometry;
Citations & Related Records

Times Cited By Web Of Science : 9  (Related Records In Web of Science)
Times Cited By SCOPUS : 10
연도 인용수 순위
1 Lakowicz, J. R., Gratton, E., Laczko, G., Cherek, H. and Limkeman, M., Analysis of fluorescence decay kinetics from variable-frequency phase shift and modulation data. Biophys. J., 46, 463-477 (1984)   DOI   ScienceOn
2 Lakowicz, J. R., Gryczynski, I., Piszczek, G., Tolosa, L., Nair, R, Johnson, M. L. and Nowaczyk, K., Microsecond dynamics of biological macromolecules. Methods Enzymol., 323, 473-509 (2000)   DOI   PUBMED
3 Lakowicz, J. R., Malak, H., Gryczinski, I., Castellano, F. N. and Meyer, G. J., DNA dynamics observed with long lifetime metalligand complexes. Biospectroscopy, 1, 163-168(1995)   DOI
4 Mergny, J. L., Siama-Schwok, A, Montenay-Garestier, T., Rougee, M. and Helene, C., Fluorescence energy transfer between dimethyldiazaperopyrenium dication and ethidium intercalated in poly d(A-T). Photochem. Photobiol., 53, 555-558 (1991)   DOI   ScienceOn
5 Murata, S. I., Kusba, J., Piszczek, G., Gryczynski, I. and Lakowicz, J. R., Donor fluorescence decay analysis for energy transfer in double-helical DNA with various acceptor concentrations. Biopolymers, 57, 306-315 (2000)   DOI   ScienceOn
6 Steinberg, I. Z. and Katchalski, E., Theoretical analysis of the role of diffusion in chemical reactions, fluorescence quenching, and nonradiative energy transfer. J. Chem. Phys., 48, 2404-2410 (1968)   DOI
7 Stryer, L., Thomas, D. D. and Meares, C. F., Diffusion-enhanced fluorescence energy transfer. Ann. Rev. Biophys. Bioeng., 11,203-222 (1982)   DOI   ScienceOn
8 Blumen, A. and Manz, J., On the concentration and time dependence of the energy transfer to randomly distributed acceptors. J. Chem. Phys., 71, 4694-4702 (1979)   DOI
9 Terpetschnig, E., Szmacinski, H. and Lakowicz, J. R., Longlifetime metal-ligand complexes as probes in biophysics and clinical chemistry. Methods Enzymol., 278, 295-321 (1997)   DOI   PUBMED
10 Malak, H., Gryczynski, I., Lakowicz, J. R., Meyers, G. J. and Castellano, F. N., Long-lifetime metal-ligand complexes as luminescent probes for DNA J. Fluorescence, 7, 107-112 (1997)   DOI   ScienceOn
11 Haugen, G. R. and Lytle, F. E., Quantitation of fluorophores in solution by pulsed laser excitation and time-filtered detection. Anal. Chem., 53, 1554-1559 (1981)   DOI
12 Friedman, A. E., Chambron, J.-C., Sauvage, J.-P., Turro, N. J. and Barton, J. K., Molecular 'light switch' for DNA: $Ru(bpy)_2$ $(dppz)^{2+}$'. J Am. Chem. Soc., 112, 4960-4962 (1990)   DOI
13 DeGraff, B. A. and Demas, J. N., Direct measurement of rotational correlation times of luminescent ruthenium(Jl) molecular probes by differential polarized phase fluorometry. J. Phys. Chem., 98, 12478-12480 (1994)   DOI   ScienceOn
14 Lakowicz, J. Rand Maliwal, B. P., Construction and performance of a variable-frequency phase-modulation fluorometer. Biophys. Chem., 21, 61-78 (1985)   DOI   ScienceOn
15 Lakowicz, J. R., Gryczynski, I., Kusba, J., Wiczk, W., Szmacinski, H. and Johnson, M. L., Site-to-site diffusion in proteins as observedby energy transfer and frequency domain fluorometry. Photochem. Photobiol., 59,16-29 (1994)   DOI   ScienceOn
16 Stryer, L., Fluorescence energy transfer as a spectroscopic ruler. Ann. Rev. Biochem., 47,819-846 (1978)   DOI   PUBMED   ScienceOn
17 Murphy, C. J. and Barton, J. K., Ruthenium complexes as luminescent reporters of DNA. Methods Enzymol., 226, 576-594 (1993)   DOI   PUBMED
18 Lakowicz, J. R., Piszczek, G. and Kang, J. S., On the possibility of long-wavelength long-lifetime high quantum-yield luminophores. Anal. Biochem., 288, 62-75 (2001)   DOI   ScienceOn
19 Steinberg, I. Z., Long-range nonradiative transfer of electronic excitation energy in proteins and polypeptides. Ann. Rev. Biochem., 40, 83-114 (1971)   DOI   PUBMED   ScienceOn
20 Gratton, E., Lakowicz, J. R., Maliwal, B. P., Cherek, H. and Laczko, G., Resolution of mixtures of fluorophores using variable-frequency phase and modulation data. Biophys. J., 46, 478-486 (1984)
21 Maliwal, B. P., Kusba, J. and Lakowicz, J. R., Fluorescence energy transfer in one dimension: frequency-domain fluorescence study of DNA-fluorophore complexes. Biopolymers, 35, 245-255 (1995)   DOI   ScienceOn
22 Kang, J. S. and Lakowicz, J. R., Fluorescence resonance energy transfer in calf thymus DNA from a long-lifetime metal-ligand complex to nile blue. J. Biochem. Mol. Biol., 34, 551-558 (2001)
23 Feddersen, B. A., Piston, D. Wand Gratton, E., Digital parallel acquisition in frequency domain fluorimetry. Rev. Sci. Instrum., 60, 2929-2936 (1989)   DOI
24 Jenkin, Y., Friedman, A. E., Turro, N. J. and Barton, J. K., Characterization of dipyridophenazine complexes of ruthenium(II): The light switch effect as a function of nucleic acid sequence and conformation. Biochemistry, 31, 10809-10816 (1992)   DOI   ScienceOn
25 Small, E. W. and Isenberg, I., Hydrodynamics properties of a rigid molecule: Rotational and linear diffusion and fluorescence anisotropy. Biopolymers, 16, 1907-1928 (1977)   DOI   ScienceOn