• 제목/요약/키워드: NavierStokes equations

검색결과 1,272건 처리시간 0.023초

A CLASSIFICATION OF THE SECOND ORDER PROJECTION METHODS TO SOLVE THE NAVIER-STOKES EQUATIONS

  • Pyo, Jae-Hong
    • Korean Journal of Mathematics
    • /
    • 제22권4호
    • /
    • pp.645-658
    • /
    • 2014
  • Many projection methods have been progressively constructed to find more accurate and efficient solution of the Navier-Stokes equations. In this paper, we consider most recently constructed projection methods: the pressure correction method, the gauge method, the consistent splitting method, the Gauge-Uzawa method, and the stabilized Gauge-Uzawa method. Each method has different background and theoretical proof. We prove equivalentness of the pressure correction method and the stabilized Gauge-Uzawa method. Also we will obtain that the Gauge-Uzawa method is equivalent to the gauge method and the consistent splitting method. We gather theoretical results of them and conclude that the results are also valid on other equivalent methods.

Flow Field Analysis on the Stagnation Streamline of a Blunt Body

  • Lee, Chang-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권2호
    • /
    • pp.149-156
    • /
    • 2016
  • The hypersonic flow on the stagnation streamline of a blunt body is analyzed with quasi one-dimensional (1-D) Navier-Stokes equations approximated by adopting the local similarity to the two-dimensional (2-D)/axisymmetric Navier-Stokes equations. The governing equations are solved using the implicit finite volume method. The computational domain is confined from the stagnation point to the shock wave, and the shock fitting method is used to find the shock position. We propose a boundary condition at the shock, which employs the shock wave angle in the vicinity of the stagnation streamline using the shock shape correlation. As a result of numerical computation conducted for the hypersonic flow over a sphere, the proposed boundary condition is shown to improve the accuracy of the prediction of the shock standoff distance. The quasi 1-D Navier-Stokes code is efficient in computing time and is reliable for the flow analysis along the stagnation streamline and the prediction of heat flux at the stagnation point in the hypersonic blunt body flow.

일반 비직교 표면좌표계에서의 비압축성 Navier-Stokes방정식의 수치해석 (Calculation of the incompressible Navier-stokes equations in generalized nonorthogonal body fitted coordinate system)

  • 강동진;배상수
    • 대한기계학회논문집B
    • /
    • 제20권3호
    • /
    • pp.1015-1027
    • /
    • 1996
  • In this paper, a numerical procedure for the calculation of the incompressible Navier-Stokes equations in a generalized nonorthogonal body fitted coordinate system is proposed and is validated through three test problems. Present numerical procedure derives the pressure equation by using the pressure substitution method on the regular grid system, and discretized momentum equations are based on the covariant velocity components. Cavity flow, backward facing step flow, and two dimensional channel flow with a sinusoidal wavy wall are chosen as three test problems. Numerical solutions obtained by present procedure shows a good agreement with previous numerical and/or experimental results. Convergence rate is also satisfactory.

THE SECOND-ORDER STABILIZED GAUGE-UZAWA METHOD FOR INCOMPRESSIBLE FLOWS WITH VARIABLE DENSITY

  • Kim, Taek-cheol;Pyo, Jae-Hong
    • Korean Journal of Mathematics
    • /
    • 제27권1호
    • /
    • pp.193-219
    • /
    • 2019
  • The Navier-Stokes equations with variable density are challenging problems in numerical analysis community. We recently built the 2nd order stabilized Gauge-Uzawa method [SGUM] to solve the Navier-Stokes equations with constant density and have estimated theoretically optimal accuracy. Also we proved that SGUM is unconditionally stable. In this paper, we apply SGUM to the Navier-Stokes equations with nonconstant variable density and find out the stability condition of the algorithms. Because the condition is rather strong to apply to real problems, we consider Allen-Cahn scheme to construct unconditionally stable scheme.

ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO STOCHASTIC 3D GLOBALLY MODIFIED NAVIER-STOKES EQUATIONS WITH UNBOUNDED DELAYS

  • Cung The Anh;Vu Manh Toi;Phan Thi Tuyet
    • 대한수학회지
    • /
    • 제61권2호
    • /
    • pp.227-253
    • /
    • 2024
  • This paper studies the existence of weak solutions and the stability of stationary solutions to stochastic 3D globally modified Navier-Stokes equations with unbounded delays in the phase space BCL-∞(H). We first prove the existence and uniqueness of weak solutions by using the classical technique of Galerkin approximations. Then we study stability properties of stationary solutions by using several approach methods. In the case of proportional delays, some sufficient conditions ensuring the polynomial stability in both mean square and almost sure senses will be provided.

A PARALLEL IMPLEMENTATION OF A RELAXED HSS PRECONDITIONER FOR SADDLE POINT PROBLEMS FROM THE NAVIER-STOKES EQUATIONS

  • JANG, HO-JONG;YOUN, KIHANG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제22권3호
    • /
    • pp.155-162
    • /
    • 2018
  • We describe a parallel implementation of a relaxed Hermitian and skew-Hermitian splitting preconditioner for the numerical solution of saddle point problems arising from the steady incompressible Navier-Stokes equations. The equations are linearized by the Picard iteration and discretized with the finite element and finite difference schemes on two-dimensional and three-dimensional domains. We report strong scalability results for up to 32 cores.

2차원 축류압축기 블레이드의 공력설계를 위한 Navier-Stokes방정식 적용 연구 (Application of Navier-Stokes Equations to Aerodynamic Design of Two-Dimensional Axial-Flow Compressor Blades)

  • 정희택;김주섭
    • 동력기계공학회지
    • /
    • 제2권3호
    • /
    • pp.15-20
    • /
    • 1998
  • An integrated computing system has been developed for a Navier-Stokes design procedure of an axial-flow compressor blades. The process is done on the four separate steps, i.e., determination of the basic profiles, generation of computational grids, cascade flow simulation and analysis of the computed results in design sense. Applications are made to the blade design of the LP compressor. Computational results are analyzed with respect to the flow-field characteristics and are compared with the expected design requirements. The present system are coupled with the design procedure of the turbomachinery blades using the Navier-Stokes technique.

  • PDF

SIMPLE Algorithm기반의 비압축성 Navier-Stokes Solver와 Immersed Boundary Method (IMPLEMENTATION OF IMMERSED BOUNDARY METHOD TO INCOMPRESSIBLE NAVIER-STOKES SOLVER USING SIMPLE ALGORITHM)

  • 김건홍;박승오
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.397-403
    • /
    • 2010
  • The Immersed boundary method(IBM) is one of CFD techniques which can simulate flow field around complex objectives using simple Cartesian grid system. In the previous studies the IBM has mostly been implemented to fractional step method based Navier-Stokes solvers. In these cases, pressure buildup near IB was found to occur when linear interpolation and stadard mass conservation is used and the interpolation scheme became complicated when higher order of interpolation is adopted. In this study, we implement the IBM to an incompressible Navier-Stokes solver which uses SIMPLE algorithm. Bi-linear and quadratic interpolation equations were formulated by using only geometric information of boundary to reconstruct velocities near IB. Flow around 2D circular cylinder at Re=40 and 100 was solved by using these formulations. It was found that the pressure buildup was not observed even when the bi-linear interpolation was adopted. The use of quadratic interpolation made the predicted aerodynamic forces in good agreement with those of previous studies.

  • PDF

HOMOGENIZATION OF THE NON-STATIONARY STOKES EQUATIONS WITH PERIODIC VISCOSITY

  • Choe, Hi-Jun;Kim, Hyun-Seok
    • 대한수학회지
    • /
    • 제46권5호
    • /
    • pp.1041-1069
    • /
    • 2009
  • We study the periodic homogenization of the non-stationary Stokes equations. The fundamental homogenization theorem and corrector theorem are proved under a very general assumption on the viscosity coefficients and data. The proofs are based on a weak formulation suitable for an application of classical Tartar's method of oscillating test functions. Such a weak formulation is derived by adapting an argument in Teman's book [Navier-Stokes Equations: Theory and Numerical Analysis, North-Holland, Amsterdam, 1984].

공극매체에서의 파동장에 대한 Boussinesq 방정식의 유도 및 적용 (Derivation and Application of Boussinesq Equations for the Wave Field in Porous Media)

  • 전인식;민용침;임학수
    • 대한토목학회논문집
    • /
    • 제35권5호
    • /
    • pp.1061-1071
    • /
    • 2015
  • 공극매체에서의 파동장을 해석할 목적으로 공극매체 흐름에 대한 Reynolds 이송정리를 적용하여 공극매체에서의 Navier-Stokes 방정식을 유도하였으며 기존의 연구들과 비교하였다. 또한, 이 N-S 방정식을 이용하여 공극매체 내외에서 파동장의 비선형성과 분산성을 적절히 재현하기 위한 확장형 Boussinesq 방정식을 유도하였다. 이들 방정식의 정확도를 검증하기 위하여 공극방파제의 반사율과 투과율에 대한 수치해석을 수행하여 그 결과를 기존의 수리실험결과들과 비교하였다. 수치해석결과는 토립자의 가상질량계수에 민감하게 반응하였으며 계수를 영으로 처리했을 때 수리실험결과와 비교적 잘 일치하는 것으로 나타났다.