J. KSIAM Vol.22, No.3, 155-162, 2018 http://dx.doi.org/10.12941/jksiam.2018.22.155

A PARALLEL IMPLEMENTATION OF A RELAXED HSS PRECONDITIONER
FOR SADDLE POINT PROBLEMS FROM THE NAVIER-STOKES EQUATIONS

HO-JONG JANG AND KIHANG YOUN'

DEPARTMENT OF MATHEMATICS, RESEARCH INSTITUTE FOR NATURAL SCIENCES, HANYANG UNIVER-
SITY, SEOUL 04763, KOREA
E-mail address: khyoun@hanyang.ac.kr

ABSTRACT. We describe a parallel implementation of a relaxed Hermitian and skew-Hermitian
splitting preconditioner for the numerical solution of saddle point problems arising from the
steady incompressible Navier-Stokes equations. The equations are linearized by the Picard iter-
ation and discretized with the finite element and finite difference schemes on two-dimensional
and three-dimensional domains. We report strong scalability results for up to 32 cores.

1. INTRODUCTION

We consider the parallel solution of the saddle point problems arising from the discretization
and linearization of the incompressible Navier-Stokes equations. Recall that the steady-state
Navier-Stokes equation is

—vAu+ (u-V)u+Vp=f,
V.-u=0,
u=g.
The problem is posed on an open and bounded domain Q2 in R? (d = 2,3), with suitable
boundary conditions specified on 9€2. Here u denotes the fluid velocity vector field and p the
pressure scalar field, f is a known forcing term, g is some type of boundary operator (e.g.
Dirichlet boundary data), and v > 0 represents viscosity. Due to the convection term (u- V)u,
the Navier-Stokes equation is nonlinear. They can be linearized by the Picard iteration, which
leads to a sequence of Oseen problems,
—vAu+ (v-V)u+ Vp =f,
V-u=0,
u=g.
Received by the editors May 29 2018; Accepted September 10 2018; Published online September 15 2018.
2000 Mathematics Subject Classification. 65F10, 65N22, 65Y05, 76D07.

Key words and phrases. Saddle point problems; Preconditioning; Krylov subspace methods; Multicores.
T Corresponding author.

155

156 H. JANG AND K. YOUN

Here the fluid vector field v is the approximation of u from the previous the Picard iteration.
Several approximation techniques can be used to discretize the Oseen problem leading to a
generalized saddle point system [3] of the form

R

where now u, p, f, and g are finite-dimensional counterparts of the functions denoted by the
equal symbols, A € R™*"™ is a block diagonal matrix consisting of a set of d (for problems in d
dimensions) independent discrete convection-diffusion operators, B” € R™*™ is the discrete
gradient, B represents a discrete divergence operator, and C' € R™*" is a stabilization matrix.
Here we assume that a div-stable method (like MAC) is being used, so that no stabilization is
required and we can take C' = 0.

The efficient solution of (1.1) calls for rapidly convergent iterative methods. Much work
has been done on the developments of efficient preconditioners for Krylov subspace methods
applied to this problem; see, e.g., [1, 4, 6]. A promising technique for preconditioning the linear
system (1.1) is the Hermitian and skew-Hermitian splitting(HSS) preconditioner introduced in
[3], and some modifications of the HSS preconditioner including its relaxed adaptations have
proposed in [7, 11].

In this paper we evaluate the potential of a relaxed HSS preconditioner within GMRES for
solving large problems in a parallel environment. Our parallel implementation is largely based
on public solver utilities and domain software, mostly from the PETSc [2].

The paper is organized as follows. Section 2 gives the brief description of a relaxed HSS
preconditioner. The specifics of the parallel implementation are given in Section 3. Numerical
results are given in Section 4. Finally, some concluding remarks are contained in Section 5.

2. THE RELAXED HSS PRECONDITIONER

2.1. HSS iteration for the saddle point problem. From the structure of the saddle point
system (1.1), write A = H + S, where

0 0 -B 0

are the symmetric and skew-symmetric part of A, respectively. Let @ > 0 be a parameter.
Consider the following two splittings of A:

A=(Z+H)—(aZ-S8) and A= (aZ+S)— (aZ —H).

Here Z denotes the identity matrix, and both of the matrices (aZ + H) and (aZ + S) are
nonsingular. Alternating between these two splittings leads to the stationary HSS iteration:

T
H:;M+Aﬁ:f40 0 B}

},S:;M—Aﬁ:[

(aZ+H)z"2 = (aT—8S)a*+b
(L +8)z*l = (o —H)2z*"z +b

A PARALLEL IMPLEMENTATION OF A RELAXED HSS PRECONDITIONER 157

(k = 0,1,...). It has been studied in [3] that for all & > 0, the HSS iteration is convergent
unconditionally to the unique solution of the saddle point problem (1.1).

2.2. HSS preconditioner and its variants. Benzi and Golub [3] introduced a Krylov sub-
space preconditioning strategy based on the symmetric/skew-symmetric splitting of the coeffi-
cient matrix A. Let

~ 1
P = %(QI‘I— H)(aZ +S)
be a left-preconditioner for solving (1.1), then solving
P Az = c,

where ¢ = P~ 1b, using GMRES will always converge to the unique solution of the augmented
linear system Ax = b. Since the factor i has no effect on the preconditioned system, the HSS
preconditioner can be written as

1 1 T T, 1 T
PHza(aI+H)(aI+S):a[A+aI 0:| |:aI B :| = |:A+a[B +OzAB .

0 al| |—-B ol —-B al

2.1
It follows from (1.1) and (2.1) that the difference between the HSS preconditioner Py and the
coefficient matrix A is

(2.2)

R = P A[a[iABT]
H=/FH A= .

0 al
We see that, as « tends to zero, the diagonal blocks in R ;7 tend to zero while the nonzero off-
diagonal block becomes unbounded. Hence, it is sought an appropriate « to balance the weight
of both parts. We refer readers to [7] for a detailed analysis of these preconditioners. Recently,
Salkuyeh et. al [11] introduced a new relaxed version of the HSS (RH) preconditioner as

A ol[I1 BT A ABT
PrE = [o I] [—B al} - [—B al] ' 3)
In this case, the difference between the RH preconditioner Prp and the coefficient matrix A4 is
B _Jo (A-DBT
Rray = Pruy — A= [0 ol . 2.4)

As « tends to zero the (2, 2) block of Ry tends to zero and in contrast with Ry in (2.2)
the (1, 2) block remains bounded. In [11], it has been shown that the RH preconditioner is in
general superior to the HSS preconditioner and its variant in [7].

Next, we consider the parallel implementation of the RH preconditioner.

3. PARALLEL IMPLEMENTATION

The parallel implementation is built upon the PETSc framework and is written in C. We demon-
strate the strategy used to parallelize the solver in the RH preconditioner case. Here we briefly
describe the PETSc packages and libraries we use in our code.

158 H. JANG AND K. YOUN

e Vec(Vectors). Vector operations required for setting up and solving large-scale linear
and nonlinear problems. Includes easy-to-use parallel scatter and gather operations, as
well as special-purpose code for handling ghost points for regular data structures.

e Mat(Operators). A large suite of data structures and code for the guidance of parallel
sparse matrices. Includes four different parallel matrix data structures, each appropriate
for a different class of problems.

e KSP(Krylov Subspace Methods). Parallel implementations of many popular Krylov
subspace iterative methods, including GMRES, CG, CGS, BiCG-Stab, two variants of
TFQMR, CR, and LSQR. All are coded so that they are immediately usable with any
preconditioners and any matrix data structures, including matrix-free methods.

e PC(Preconditioners). A collection of sequential and parallel preconditioners, including
(sequential) ILU(k), LU, and (both sequential and parallel) block Jacobi, overlapping
additive Schwarz methods and structured MG.

o MatMPIAIJSetPreallocation. Preallocates memory for a sparse parallel matrix in AIJ
format (the default parallel PETSc format). For good matrix assembly performance we
should preallocate the matrix storage by setting the parameters the number of nonze-
ros in rows of the diagonal or off-diagonal. By setting these parameters accurately,
performance can be increased by more than a factor of 50.

e VecAssembly, MatAssembly. Communicates Vector/Matrix values between different
processes.

e PCFactorSetMatSolverPackage, MATSOLVERSUPERLU DIST. A solver package pro-
viding solvers LU and ILU for sequential matrices via the external package SuperL.U.

The most important works, and also the one requiring the enormous amount of effort to
run efficiently, are defining the matrix-vector multiplication and preconditioner application in
the RH preconditioner setting. To make efficient use of the PETSc library, the correct use of
the PETSc data parallel structures for Matrices and Vectors is crucial for performance. Most
of the work necessary to use PETSc was contained in constructing and populating these data
structures. The PETSc library has specific data structures for sparse matrices. Since the matrix
A is sparse, the MPIAIJ format is used to store it. In order to use this format in parallel
MatMPIAIJSetPreallocation is called to create and allocate the data structure. We use PETSc
calls to create a matrix object. We can call MatMPIAIJSetPreallocation to create a parallel
matrix. After the matrix has been created, we call MatSetValues to insert values. Filling in
the elements of a matrix or a vector in parallel takes little care: we want each element to be
constructed only once, so a process needs to know which vector elements and matrix rows it
owns. For this purpose, calls such as MatGetOwnershipRange. Once all of the values have
been inserted with MatSetValues, we must call MatAssemblyBegin and MatAssemblyEnd to
perform any needed message passing of nonlocal components in order to allow the overlap of
calculation and communication.

After all this step, all vectors and matrices are partitioned as required. The C code to create
a parallel matrix and vector and store saddle-point matrix and vectors is listed in Table 1.

A PARALLEL IMPLEMENTATION OF A RELAXED HSS PRECONDITIONER 159

TABLE 1

MatCreate(PETSC_COMM_WORLD,&A);
MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,N,N);
MatMPIAIJSetPreallocation(A,D_nz,NULL,O_nz,NULL);
MatGetOwnershipRange(A,&Istart,&lend);
for (i=0;1i< Annz; i++) {

if (Istart < A_rowind[i] < Iend){

MatSetValues(A,1,&A rowind[i],1,& A_colind[i],& A_val[i],ADD_VALUES);

3

MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
VecCreate(PETSC_COMM_WORLD, &b);
VecSetSizes(b,PETSC_DECIDE,N);
for =031 < bnnz; i++) {

if (Istart < b_rowind[i]) < Iend){

VecSetValues(b,1,&b_rowind[i],&b_val[i], ADD_VALUES);

3

VecAssemblyBegin(b);
VecAssemblyEnd(b);

To make RH preconditioner in the matrix-matrix multiplication form, we make (aZ + H)
and (aZ + S) matrices using the previous routine and make RH preconditioner using parallel
matrix-matrix multiplication routine MatMatMult. The C code to create the RH preconditioner
is as in Table 2.

TABLE 2

MatCreate(PETSC_COMM _WORLD,&M _hss);
MatSetSizes(M_hss,PETSC_DECIDE,PETSC_DECIDE,N,N);

MatMatMult(M1_hss,M2_hss, MAT INITIAL_MATRIX,PETSC_DEFAULT,&M_hss);
MatDiagonalSet(M_hss,zero,ADD_VALUES);

We nowhere combine GMRES methods and RH preconditioner to solve the saddle point sys-
tem (1). We can implement this preconditioned GMRES solver by using KSP and PC modules
within the PETSc package. The first step to make a solver for a linear system with KSP is to
create a solver context with the KSPCreate, and we set the right-hand side and solution vectors
by calling the routine KSPSolve. To employ a preconditioning method, we can set the precon-
ditioner type and method with the subroutine PCSetType and PCFactorSetMatSolverPackage.
During solution of preconditioned Krylov method, convergence is decided the relative decrease
of the residual norm. This parameter and the maximum number of iteration steps can be set
with the KSPSetTolerances. The C code to create the KSP context and to perform the solution
is as in Table 3.

160 H. JANG AND K. YOUN

TABLE 3

KSPCreate(PETSC_COMM_WORLD,&ksp);
KSPSetType(ksp, KSPGMRES);

KSPGMRESSetRestart(ksp, 50);

KSPSetTolerances(ksp, le-24,1e-6,PETSC_DEFAULT,500*50);
KSPGetPC(ksp,&pc);

KSPSetOperators(ksp,A,M_hss);

PCSetType(pc,PCLU);

PCFactorSetMatSolverPackage(pc, MATSOLVERSUPERLU_DIST);
PCSetUp(pc);

KSPSolve(ksp,b,x);

KSPGetResidualNorm(ksp,&rnorm);
KSPGetlterationNumber(ksp,&its);

4. NUMERICAL EXPERIMENTS

In this section, we present some numerical experiments on a compute cluster. The cluster
consists of ten Dell FC430 nodes, and each node has a 20-core Intel 2.3 GHz E6-2650v3 Xeon
processor and 64 GB of GDDR3 RAM.

The first example problem is a strong scalability and preconditioner effectiveness study for
the steady 2D Oseen equations for the lid-driven cavity problem generated using the IFISS
package [8]. We also show numerical experiments to demonstrate the effectiveness of the RH
preconditioner Pry for the saddle point problem (1.1) in terms of iteration counts and CPU
time in seconds. The value of the viscosity is ¥ = 0.01, and « is chosen experimentally to
minimize the GMRES iteration counts. Using Q2-Q1 finite elements on the uniform 256 x 256
grid results in a 148,739 x 148,739 saddle point matrix with 16,836,552 nonzero entries.
The stopping criterion for GMRES is a reduction of the initial residual norm by 6 orders of
magnitude. The restarted GMRES with restarting frequency 50, i.e., GMRES(50), is applied.
The initial guess is the zero vector. GMRES iteration counts and CPU times using 2, 4, 8, 16
and 32 cores are shown in Table 4. The iteration counts are nearly constant as the number of
CPU cores grows, and the CPU times show a quite good scalability for up to 32 cores. As in
[11], RH preconditioner Prp is more effective than the HSS preconditioner Pz in terms of
the iteration counts and CPU times.

Next, we present the parallel results for a 3D Oseen problem discretized by the stable
Marker-and-Cell (MAC) method [10] finite difference method with viscosity v = 0.01, and
a = 0.01. Brief information of the test problems, including n, m,nnz(A) and nnz(B) are
presented in Table 5 where nnz(A) denotes the number of the nonzero elements of the matrix
A. GMRES iteration counts and CPU times are shown in Table 6 when the problem is dis-
cretized on the 32 x 32 x 32 and 64 x 64 x 64 grids. The initial guess and stopping criterion
are as in the previous example.

A PARALLEL IMPLEMENTATION OF A RELAXED HSS PRECONDITIONER 161

TABLE 4. GMRES(50) iterations and CPU times with HSS and RH Precon-
ditioners (2D Oseen, Q2-Q1, uniform 256 x 256 grid, v = 0.01, a = 1072)

No. of cores

Precond. 2 4 8 16 32
Iterations 73 68 64 59 54
Pu Set-up time 11.59 9.94 8.70 10.37 10.55
Iter time 635.33 390.48 257.61 200.06 140.40
Total time 646.92 400.41 266.30 210.42 150.95
Iterations 3 3 3 3 3
Pru Set-up time 10.82 9.17 8.74 9.60 10.40
Iter time 26.10 17.05 11.94 10.18 7.57
Total time 36.92 26.22 20.68 19.78 17.97

TABLE 5. The size of the matrices A and B for different grids

Lid-driven cavity problem

Grid n m nnz(A) nnz(B)
32 X 32 x 32 95,232 32,768 648,576 190,464
64 x 64 x 64 774,144 262,144 5,346,048 1,548,288

TABLE 6. GMRES(50) iterations and CPU times with RH Preconditioner (3D
Oseen, MAC, v = 0.01, o = 1072)

No. of cores 2 4 8 16 32
32 x 32 x 32 2 2 2 2 2
Set-up time 118.94 51.04 30.76 20.99 16.37
Iter time 54.18 34.56 20.20 17.03 10.81
Total time 173.13 85.60 50.95 38.03 27.18
64 x 64 x 64 2 2 2 2 2
Set-up time 5555.82 1904.60 1037.84 618.87 518.36
Iter time 1154.51 736.43 408.57 338.95 210.96
Total time 6710.33 2641.02 1446.42 957.82 729.32

5. CONCLUSIONS

In this paper we investigated the parallel performance of GMRES with a new relaxed version of
the HSS preconditioner for the solution of linear systems arising from various discretizations
of the steady Oseen equations in two-dimensional and three-dimensional. Parallelization of
the code was achieved within PETSc utilities and MPICH. The results show good scalability
and performance of the preconditioned Krylov subspace iteration method with respect to the
problem size and the number of cores.

162 H. JANG AND K. YOUN

REFERENCES

[1] Z. -Z. Bai, G. H. Golub and M. K. Ng, Hermitian and skew-Hermitian splitting methods for non-Hermitian
positive definite linear systems, SIAM J. Matrix Anal. Appl., 24 (2003), 603-626.

[2] S. Balay, S. Abhyankar, F. Adams, J. Brown and P. Brune et al., PETSc Users Manual, Argonne National
Laboratory, ANL-95/11 - Revision 3.9 (2018).

[3] M. Benzi and G. H. Golub, A preconditioner for generalized saddle point problems, SIAM J. Matrix Anal.
Appl., 26 (2004), 20-41.

[4] M. Benzi, G. H. Golub and J. Liesen, Numerical solution of saddle point problems, Acta Numer, 14 (2005),
1-137.

[5] M. Benzi and J. Liu, An efficient solver for the incompressible Navier-Stokes equations in rotation form, SIAM
J. Sci. Comput., 29 (2007), 1959-1981.

[6] M. Benzi and Z. Wang, A parallel implementation of the modified augmented Lagrangian preconditioner for
the incompressible Navier-Stokes equations, Numer Algor, 64 (2013), 73-84.

[7]1 Y. Cao, L. Q. Yao, M. Q. Jiang and Q. Niu, A relaxed HSS preconditioner for saddle point problems from
meshfree discretization, J. Comput. Math, 31 (2013), 398-421.

[8] H. C. Elman, A. Ramage and D. J. Silvester, IFISS: a Matlab toolbox for modelling incompressible flow, ACM
Trans. Math. Software, 33 (2007), Article 14.

[9] H. C. Elman, D. J. Silvester and A. J. Wathen, Finite Elements and Fast Iterative Solvers: With Applications
in Incompressible Fluid Dynamics, Oxford University Press, Oxford, UK, 2005.

[10] F. H. Harlow, J. E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with
free surface, Phys. Fluids, 8(1965), 2182-2189.
[11] M. H. Salkuyeh and M. Masoudi, A new relaxed HSS preconditioner for saddle point problems, Numer. Algor.,

74 (2017), 781-795.

