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HOMOGENIZATION OF THE NON-STATIONARY STOKES
EQUATIONS WITH PERIODIC VISCOSITY

Hi Jun Choe and Hyunseok Kim

Abstract. We study the periodic homogenization of the non-stationary
Stokes equations. The fundamental homogenization theorem and correc-
tor theorem are proved under a very general assumption on the viscosity
coefficients and data. The proofs are based on a weak formulation suitable
for an application of classical Tartar’s method of oscillating test functions.
Such a weak formulation is derived by adapting an argument in Teman’s
book [Navier-Stokes Equations: Theory and Numerical Analysis, North-
Holland, Amsterdam, 1984].

1. Introduction

The study of partial differential equations (PDEs) with εY -periodic coeffi-
cients, where ε is a small parameter and Y = [0, 1]n the unit torus, has been a
classical subject in the theory of homogenization. Particularly well understood
is the periodic homogenization of linear elliptic or parabolic PDEs of second
order; the fundamental homogenization theorems and corrector theorems are
proved in standard textbooks such as Bensoussan, Lions and Papanicolaou [2]
and Sanchez-Palencia [12], etc. See also a recent book [5] by Cioranescu and
Donato. The proofs of the homogenization theorems in [2, 5, 12] are originally
due to Tartar in the middle 1970s. The main difficulty in the homogenization
of a linear elliptic PDE is to show the convergence, as ε → 0, of products
of two weakly convergent sequences appearing in the weak formulation of the
PDE. This difficulty was overcome by Tartar using special test functions in the
weak formulation. His test functions are given by products of a smooth cut-off
function and εY -periodic solutions of the adjoint equation of the PDE.

Tartar’s method of oscillating test functions was applied to the periodic
homogenization of a system related to the stationary Stokes equations by Ben-
soussan, Lions and Papanicolaou [2]. The homogenization theorem in [2] for

Received December 10, 2007.
2000 Mathematics Subject Classification. 35B27, 35Q30, 76M50.
Key words and phrases. homogenization, periodic viscosity, non-stationary Stokes equa-

tions, oscillating test functions.
The second author was supported by the Korea Research Foundation Grant funded by the

Korean Government (MOEHRD, Basic Research Promotion Fund) (KRF-2006-003-C00023).

c©2009 The Korean Mathematical Society

1041



1042 HI JUN CHOE AND HYUNSEOK KIM

the Stokes-like system can be also extended to the stationary, isotropic Stokes
equations with periodic viscosity µε = µ

( ·
ε

)
:

(1)

{
−div

(
µε

(∇uε +∇T uε
))

+∇pε = f in Ω
divuε = 0 in Ω.

Here uε = (uε
1, . . . , u

ε
n) and pε denote the unknown velocity and pressure fields,

respectively, of an isotropic, incompressible fluid in a bounded domain Ω of Rn

and f is a given external force. Suppose that λ ≤ 2µ ≤ M for some positive
constants λ and M . Then it follows from classical Korn’s inequality that the
bilinear form aε

µ defined by

aε
µ(v,w) =

∫

Ω

µε
(∇v +∇T v

) · (∇w +∇T w
)
dx

is coercive on both spaces H1
0(Ω) and V , where H1

0(Ω) and V are the stan-
dard Sobolev spaces defined in a famous book [13] by Temam; see the end of
this section for notations used throughout the paper. Hence the Lax-Milgram
theorem implies that for each f ∈ V ′, there exists a unique uε ∈ V such that

(2) aε
µ(uε,v) = 〈f ,v〉V ′×V for all v ∈ V.

But the weak formulation (2) is not suitable for a direct application of Tartar’s
method to the homogenization of (1) because only divergence-free vector fields
are allowed as test functions in (2). A right weak formulation involves a pressure
associated with uε. To introduce a pressure in L2(Ω), suppose in addition that
f ∈ H−1(Ω). Then since the mapping v 7→ aε

µ(uε,v) − 〈f ,v〉H−1(Ω)×H1
0(Ω) is a

bounded linear functional on H1
0(Ω) vanishing identically on V , it follows from

a standard result in fluid mechanics (see [7] or [13]) that there exists a unique
scalar field pε in L2(Ω)/R such that

aε
µ(uε,v)− (pε,divv)L2(Ω) = 〈f ,v〉H−1(Ω)×H1

0(Ω)

for all v ∈ H1
0(Ω). Using this weak formulation, we can apply Tartar’s method

to deduce the homogenization theorem: (uε, pε) converges weakly to the unique
weak solution (u0, p0) ∈ V × L2(Ω)/R of the homogenized equations

(3)

{
A0u0 +∇p0 = f in Ω

divu0 = 0 in Ω,

where the differential operator A0 = (A0
1, . . . , A

0
n) is defined by

v = (v1, . . . , vn) 7→ A0
j v =

(
A0v

)
j

= − ∂

∂xβ

(
ãij

αβ

∂vi

∂xα

)

for some constants ãij
αβ , 1 ≤ α, β, i, j ≤ n, satisfying the symmetry and ellip-

ticity conditions for the coefficients of linear elasticity

ãij
αβ = ãαj

iβ = ãiβ
αj = ãji

βα
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and
ãij

αβξ
i
αξ

j
β > 0 for all n× n symmetric matrices ξ = (ξi

α).

Here we adopt the summation convention for repeated indices. The corrector
theorem then can be deduced from the homogenization theorem and energy
identities by following classical arguments in [2, 5].

We have outlined proofs of the fundamental theorems on the homogenization
of the stationary Stokes equations (1). But our main concern in the paper is
a more difficult problem of the periodic homogenization of the non-stationary
Stokes equations in a quite general setting. To be precise, we are interested in
analyzing the asymptotic behavior, as ε → 0, of the weak solution uε to the
following initial boundary value problem

(HP ε)





∂tuε + Aεuε +∇pε = fε in Ω× (0, T )
divuε = gε in Ω× (0, T )

uε = uε
b on ∂Ω× (0, T )

uε = uε
0 on Ω× {0}.

Here Ω is a bounded domain in Rn, n ≥ 2, with smooth boundary ∂Ω, T is
a finite positive number and the vector or scalar fields fε, gε,uε

b and uε
0 are

known data. Moreover, the differential operator Aε = (Aε
1, . . . , A

ε
n) is defined

by

v = (v1, . . . , vn) 7→ Aε
j v = (Aεv)j = − ∂

∂xβ

(
aij

αβ

(x
ε

) ∂vi

∂xα

)

for some functions aij
αβ , 1 ≤ α, β, i, j ≤ n, in Rn satisfying the following hy-

potheses:

(4) (boundedness) M = sup
1≤α,β,i,j≤n

||aij
αβ ||L∞(Rn) <∞,

(5) (periodicity) aij
αβ(y + ek) = aij

αβ(y) (1 ≤ k ≤ n),

(6) (symmetry) aij
αβ(y) = aαj

iβ (y) = aiβ
αj(y),

and

(7) (ellipticity) aij
αβ(y)ξi

αξ
j
β ≥ λ|ξ|2

for a.e. y ∈ Rn and all n × n-symmetric matrices ξ = (ξi
α), where M,λ are

positive constants and {ek}1≤k≤n is the canonical basis of Rn; ek
i = δki equals

1 if k = i and 0 otherwise. Note that the conditions (6) and (7) hold for the
isotropic case that

aij
αβ(y) = µ(y) (δαβδij + δαjδiβ) and 0 < λ ≤ 2µ(y)

for a.e. y ∈ Rn.
The main purpose of the paper is to prove the following fundamental theo-

rems on the homogenization of (HP ε):
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The homogenization theorem If the data fε, gε,uε
b and uε

0 satisfy some
general hypotheses, then the unique weak solution uε to the problem (HP ε)
converges weakly to the unique weak solution u0 to the homogenized problem
(HP 0) as ε→ 0.

The corrector theorem Moreover, if u0 is sufficiently regular, then there
exists a corrector u1(x, t, x

ε ) such that uε − εu1 converges strongly to u0 as
ε→ 0.

The precise statements of the homogenization and corrector theorems are given
in Sections 4 and 5, respectively.

Our proofs of the fundamental theorems rely on Tartar’s method of oscillat-
ing test functions. To easily explain key ideas of the proofs, we assume for the
time being that

(8) fε = 0, gε = 0, uε
b = 0 and uε

0 = u0 ∈ H (independent of ε).

Then a standard argument allows us to deduce the existence of a unique vector
field uε in VT ≡ L2(0, T ;V ) ∩W 1,2(0, T ;V ′) such that

(9) uε(0) = u0 and 〈∂tuε(t),v〉V ′×V + aε (uε(t),v) = 0

for a.e. t ∈ (0, T ) and all v ∈ V , where the bilinear form aε is defined by

(10) aε(v,w) =
∫

Ω

aij
αβ

(x
ε

) ∂vi

∂xα

∂wj

∂xβ
dx.

Recall that the introduction of a pressure in L2(Ω) enables us to derive a right
weak formulation in the application of Tartar’s method to the stationary Stokes
equations. But in case of the non-stationary Stokes equations, the lack of the
regularity of ∂tuε prevents us from concluding that the associated pressure pε is
an L2-function in Ω×(0, T ); it would follows that pε ∈ L2(0, T ;L2(Ω)) if ∂tuε ∈
L2(0, T ;H−1(Ω)) could be shown. In fact, pε is just a distribution in Ω×(0, T ),
which makes the non-stationary problem more difficult than the stationary one.
To overcome this difficulty, we derive a new weak formulation by adapting an
argument in Teman’s book [13, Section 3.1]. The crucial ingredient is the
well-known fact that if v,w ∈ VT , then

(11)
d

dt
(v(t),w(t))L2(Ω) = 〈∂tv(t),w(t)〉V ′×V + 〈∂tw(t),v(t)〉V ′×V

for a.e. t ∈ [0, T ]. For a standard proof, see [5, Section 3.5] for instance. As an
immediate consequence of (11), we have

(uε(t)− uε(0),v)L2(Ω) =
∫ t

0

〈∂tuε(τ),v〉V ′×V dτ

for all t ∈ [0, T ] and v ∈ V . Combining this and (9), we deduce that

(12) (uε(t)− u0,v)L2(Ω) +
∫ t

0

aε(uε(τ),v) dτ = 0
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for all t ∈ [0, T ] and v ∈ V , which then implies the existence of a unique scalar
P ε ∈ C([0, T ];L2(Ω)/R) such that

(uε(t)− u0,v)L2(Ω) − (P ε(t), divv)L2(Ω) +
∫ t

0

aε(uε(τ),v) dτ = 0

for all t ∈ [0, T ] and v ∈ H1
0(Ω). Using this weak formulation, we can apply

Tartar’s method to deduce the homogenization theorem: uε converges weakly
in VT to a unique vector field u0 in VT such that

(13) (u0(t)− u0,v)L2(Ω) +
∫ t

0

a0(u0(τ),v) dτ = 0

for all t ∈ [0, T ] and v ∈ V , where a0 is a bilinear form on H1(Ω) defined later
by (39) and (44). On the other hand, the identity (11) with v = w enables
us to derive the energy identities of uε and u0 from (9) and a differential form
of (13). Using the homogenization theorem and the energy identities, we can
then show that

1
2
||uε(t)− u0(t)||L2(Ω) +

∫ t

0

aε(uε(τ),uε(τ)) dτ →
∫ t

0

a0(u0(τ),u0(τ)) dτ

as ε → 0 for each t ∈ [0, T ]. This convergence is actually uniform on [0, T ]
thanks to the Ascoli-Arzelà theorem. Hence adapting the arguments in [5],
we can deduce the corrector theorem: uε → u0 strongly in C([0, T ];L2(Ω))
and if u0 is sufficiently regular, then there is a corrector u1(x, t, x

ε ) such that
uε − εu1 → u0 strongly in L2(0, T ;H1(Ω)).

We have provided the key ideas of our proofs of the fundamental theorems
of the homogenization of (HP ε) with the data satisfying (8). The complete
proofs of the theorems in their full generality will be provided in Sections 4 and
5. In Section 4, we prove the homogenization theorem, Theorem 7, by applying
Tartar’s method of oscillating test functions. The suitable weak formulation
and energy identity are derived in Section 2 where we also establish the well-
posedness of the problem (HP ε) with ε > 0 fixed. We remark that the identity
(11) is the crucial ingredient of the derivations of weak formulation and energy
identity and of the proof of the uniform convergence of uε as well. In Section 3,
we apply the standard multi-scale method to derive the homogenized problem
(HP 0), that is, the limiting problem of (HP ε) as ε → 0. The well-posedness
of (HP 0) is also established. The final section, Section 5, is devoted to proving
the corrector theorem, Theorem 9. The proof is based on the homogenization
theorem and energy identities. Another technical tools are classical Korn’s
inequality for vector fields in H1(Ω) and a Lr-regularity result, Lemma 11, on
weak solutions of the stationary Stokes equations with L∞-viscosity coefficients.
For completeness, we provide a detailed proof of Lemma 11 using the reverse
Hölder inequality.

We finish this introductory section with explaining the notations and con-
vection used throughout this paper.
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Notations throughout the paper. (i) For the function spaces, we adopt the
following notations in Teman’s book [13]:

1 < r <∞, Lr(Ω)/R = {h ∈ Lr(Ω) :
∫

Ω

h dx = 0}, Lr(Ω) = {Lr(Ω)}n,

W2,r(Ω)= {W 2,r(Ω)}n, H1(Ω) = {H1(Ω)}n, H
1
2 (∂Ω)= {h|∂Ω : h ∈ H1(Ω)},

D(Ω) = C∞0 (Ω), H1
0(Ω) = {D(Ω)}n

H1(Ω)
, H−1(Ω) =

[
H1

0(Ω)
]′
,

V ≡ {h ∈ {D(Ω)}n : divh = 0 in Ω}, H = V L2(Ω)
and V = V H1(Ω)

.

(ii) The dual paring of any Banach space X and its dual X ′ is denoted by
〈·, ·〉X′×X or simply 〈·, ·〉. Similarly, the inner product of any Hilbert space X
is denoted by (·, ·)X or simply (·, ·).

(iii) We denote by C a generic positive constant depending only on n, λ,M, T
and Ω, etc. but not on ε.

2. The well-posedness of (HP ε)

In this section, after deriving a suitable weak formulation, we prove the well-
posedness of the problem (HP ε) with the data fε, gε,uε

b and uε
0 satisfying the

regularity

fε ∈ L2(0, T ;H−1(Ω)), gε ∈ L2(0, T ;L2(Ω)),

uε
b ∈ L2(0, T ;H

1
2 (∂Ω)) and uε

0 ∈ L2(Ω).(14)

First of all, to assure the existence of weak solutions with some regularity, we
impose a compatibility condition on gε,uε

b and uε
0. Assume that there exists a

vector field

(15) Gε ∈ WT ≡ L2(0, T ;H1(Ω)) ∩W 1,2(0, T ;H−1(Ω))

such that

(16) divGε = gε in Ω× (0, T ), Gε|∂Ω×(0,T ) = uε
b and uε

0 −Gε(0) ∈ H.
Here it should be noticed that the space WT can be continuously embedded
into C([0, T ];L2(Ω)) and Gε(0) is a well-defined vector field belonging to L2(Ω).

Introducing a new unknown vε = uε−Gε, we can then reduce (HP ε) to an
equivalent problem

(17)





∂tvε + Aεvε +∇pε = f̃ε in Ω× (0, T )
divvε = 0 in Ω× (0, T )

vε = 0 on ∂Ω× (0, T )
vε = vε

0 on Ω× {0},
where f̃ε = fε − ∂tGε −AεGε and vε

0 = uε
0 −Gε(0) satisfy

f̃ε ∈ L2(0, T ;H−1(Ω)), vε
0 ∈ H,

〈f̃ ,w〉 = 〈fε − ∂tGε,w〉 − aε(Gε,w) for all w ∈ H1
0(Ω)
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and

||f̃ε||L2(0,T ;H−1(Ω)) + ||vε
0||L2(Ω)

≤ C
(||fε||L2(0,T ;H−1(Ω)) + ||uε

0||L2(Ω) + ||Gε||WT

)
.

Recall from (10) that aε is the bilinear form on H1(Ω) defined by

aε(v,w) =
∫

Ω

aij
αβ

(x
ε

) ∂vi

∂xα

∂wj

∂xβ
dx for v,w ∈ H1(Ω).

On the other hand, in view of (6) and (7), we have

(18) aij
αβ(y)ξi

αξ
j
β =

1
4
aij

αβ(y)
(
ξi
α + ξα

i

) (
ξj
β + ξβ

j

)
≥ λ

4

∣∣ξi
α + ξα

i

∣∣2

for a.e. y ∈ Rn and all n × n-matrices ξ = (ξi
α). Hence it follows from (4)

and (18) that aε is a bounded, coercive form on V and thus the Lax-Milgram
theorem is applicable. In the simplistic case that Aε = −∆ (the Laplacian), the
unique solvability of the reduced problem (17) has been established by several
classical methods, for instance, a semi-discrete Galerkin method in Teman’s
book [13]. Following exactly the same arguments as in [13], we can prove the
existence of a unique weak solution vε to the problem (17): by a weak solution
to (17), we mean a vector field vε in Ω× (0, T ) such that

vε ∈ VT ≡ L2(0, T ;V ) ∩W 1,2(0, T ;V ′), vε(0) = vε
0

and

(19) 〈∂tvε(t),w〉+ aε(vε(t),w) = 〈f̃ε(t),w〉
for a.e. t ∈ (0, T ) and all w ∈ V . It should be also noted that the initial
condition makes sense because VT is continuously embedded into C([0, T ];H);
see [13]. From (11), we immediately deduce that

(20) (v(t)− v(0),w)L2(Ω) =
∫ t

0

〈∂tv(τ),w〉 dτ

for all t ∈ [0, T ] and w ∈ V . Hence the integration of (19) in time leads to an
equivalent weak formulation:

vε ∈ VT ,

(vε(t)− vε
0,w)L2(Ω) +

∫ t

0

aε(vε(τ),w) dτ =
∫ t

0

〈f̃ε(τ),w〉 dτ(21)

for all t ∈ [0, T ] and w ∈ V . Moreover, using the identity (11) with w = v, we
easily deduce from (19) that

||vε(t)||2L2(Ω) + 2
∫ t

0

aε(vε(τ),vε(τ)) dτ(22)

= ||vε
0||2L2(Ω) + 2

∫ t

0

〈f̃ε(τ),vε(τ)〉 dτ



1048 HI JUN CHOE AND HYUNSEOK KIM

for all t ∈ [0, T ]. An immediate consequence of the energy identity (22) is the
following a priori estimate of vε:

sup
0≤t≤T

||vε||2L2(Ω) +
∫ T

0

||vε||2H1(Ω) dt ≤ C

(
||vε

0||2L2(Ω) +
∫ T

0

||f̃ε||2H−1(Ω) dt

)
.

Converting back into the original variables and combining all the above esti-
mates, we have proved the following well-posedness result for (HP ε).

Theorem 1. Let ε > 0 be given. Then for any data fε, gε,uε
b and uε

0 satisfying
the conditions (14)-(16), there exists a unique weak solution uε to the problem
(HP ε) in the sense that

(23) uε −Gε ∈ VT

and

(24) (uε(t)− uε
0,w)L2(Ω) +

∫ t

0

aε(uε(τ),w) dτ =
∫ t

0

〈fε(τ),w〉 dτ

for all t ∈ [0, T ] and w ∈ V . Moreover, the solution uε satisfies

sup
0≤t≤T

||uε(t)||2L2(Ω) +
∫ T

0

(
||uε(t)||2H1(Ω) + ||∂tuε(t)||2V ′

)
dt

≤ C

(
||uε

0||2L2(Ω) + ||Gε||2WT
+

∫ T

0

||fε(t)||2H−1(Ω) dt

)

for some positive constant C = C(M,λ,Ω), independent of ε.

3. A formal asymptotic analysis and the homogenized problem

In this section, we find and analyze the homogenized problem, that is, the
limiting problem of (HP ε) as ε → 0, by performing the multi-scale method.
Suppose that (uε, pε) has a formal asymptotic expansion of the form

(25) uε(x, t) = u0
(
x, t,

x
ε

)
+ εu1

(
x, t,

x
ε

)
+ ε2u2

(
x, t,

x
ε

)
+ · · ·

and

(26) pε(x, t) = p0
(
x, t,

x
ε

)
+ εp1

(
x, t,

x
ε

)
+ · · · ,

where uk and pk are functions in Ω × [0, T ] × Rn such that uk(x, t,y) and
pk(x, t,y) are periodic in y for each (x, t) ∈ Ω × [0, T ]. Assume for simplicity
that fε = f0 and gε = g0.

By a direct calculation, we have

∇pk
(
x, t,

x
ε

)
=

(
ε−1∇yp

k +∇xp
k
) (

x, t,
x
ε

)
,

divuk
(
x, t,

x
ε

)
=

(
ε−1divy uk + divx uk

) (
x, t,

x
ε

)
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and
Aεuk

(
x, t,

x
ε

)
=

(
ε−2A1uk + ε−1A2uk + A3uk

) (
x, t,

x
ε

)
,

where
(
A1v

)
j

= − ∂

∂yβ

(
aij

αβ(y)
∂vi

∂yα

)
,

(
A2v

)
j

= − ∂

∂xβ

(
aij

αβ(y)
∂vi

∂yα

)
− ∂

∂yβ

(
aij

αβ(y)
∂vi

∂xα

)
,

(
A3v

)
j

= − ∂

∂xβ

(
aij

αβ(y)
∂vi

∂xα

)
.

Hence substituting (25) and (26) into (HP ε) and identifying the terms with
the same order of ε, we easily derive

A1u0 = 0,(27)
divyu1 + divxu0 = g0,(28)

A1u1 + A2u0 +∇yp
0 = 0,(29)

∂tu0 + A1u2 + A2u1 + A3u0 +∇yp
1 +∇xp

0 = f0.(30)

Using these equations, we will determine u0,u1 and p0.
First, integrating (30) over Y = [0, 1]n, we eliminate u2, p1 and obtain

(31) ∂t

∫

Y

u0
j dy −

∂

∂xβ

∫

Y

aij
αβ(y)

(
∂u1

i

∂yα
+
∂u0

i

∂xα

)
dy +

∂

∂xj

∫

Y

p0 dy = f0
j

for each j = 1, . . . , n. Next, from (27), we deduce that u0 is a function of (x, t)
only, i.e., u0 = u0(x, t). In fact, if we multiply (27) by u0 and integrate by
parts over Y , then by virtue of (18), we have

0 =
∫

Y

aij
αβ(y)

∂u0
i

∂yα

∂u0
j

∂yβ
dy

≥ λ

4

∫

Y

∣∣∣∣
∂u0

i

∂yα
+
∂u0

α

∂yi

∣∣∣∣
2

dy =
λ

2

∫

Y

(|∇yu0|2 + (divyu0)2
)
dy,

which implies that ∇yu0 ≡ 0. Moreover, since u1 is periodic in y, it follows
from (28) that

(32) divu0 = g0.

Then combining (28), (29) and (32), we deduce that for each (x, t) ∈ Ω×(0, T ),
(u1, p0) = (u1(x, t, ·), p0(x, t, ·)) is a periodic solution of the Stokes equations

(33)
{

A1u1 +∇yp
0 = −A2u0 in Y

divy u1 = 0 in Y.

Associated with (33) is the bilinear form aY on H1
per(Y ) defined by

(34) aY (v,w) =
∫

Y

aij
αβ(y)

∂vi

∂yα

∂wj

∂yβ
dy for v, w ∈ H1

per(Y ),
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where H1
per(Y ) is the closure of the space of all smooth periodic vector fields in

Rn with respect to the H1(Y )-norm. L2
per(Y ) and L2

per(Y ) are defined similarly.

Lemma 2. For each F ∈ [
L2

per(Y )
]n2

, there exists a unique weak solution
(v, q) in H1

per(Y )× L2
per(Y ) to the problem

(35)





A1v +∇q = div F in Y,
div v = 0 in Y,∫

Y
v dy = 0,

∫
Y
q dy = 0.

Proof. By virtue of (4) and (18), we easily deduce that aY is a continuous co-
ercive bilinear form on H1

per(Y )/R = {v ∈ H1
per(Y ) :

∫
Y

v dy = 0}. Moreover,
the mapping

w 7→ −(F,∇yw)L2(Y ) = −
∫

Y

F · ∇yw dy

is a continuous linear functional on H1
per(Y )/R. Hence the Lax-Milgram theo-

rem allows us to deduce the existence of a unique vector field

v ∈ H1
per, σ(Y )/R = {v ∈ H1

per(Y )/R : divv = 0}
such that

aY (v,w) = −(F,∇yw)L2(Y ) for all w ∈ H1
per, σ(Y )/R.

Then it is quite standard to prove the existence of a unique q ∈ L2
per(Y )/R

such that
aY (v,w)− (q, divw)L2(Y ) = −(F,∇yw)L2(Y )

for all w ∈ H1
per(Y ). This completes the proof of Lemma 2. ¤

Since u0 = u0(x, t) is independent of y, we can find general periodic solutions
of (33) by applying Lemma 2. To do this, we observe that

− (
A2u0

)
j

=
∂

∂yβ

(
aij

αβ(y)
∂u0

i

∂xα

)
=

∂

∂yβ

(
aij

αβ(y)
) ∂u0

i

∂xα

=
∂

∂yβ

(
akj

γβ(y)
∂

∂yα
(yγδki)

)
∂u0

k

∂xγ
= −

(
A1(yγek)

∂u0
k

∂xγ

)

j

for each j, that is,

(36) −A2u0 = −A1(yγek)
∂u0

k

∂xγ
.

Recall that {ek}1≤k≤n is the canonical basis of Rn and ek
i = δki. In view of

Lemma 2, we may define the compensating functions χi
α and qi

α as follows.

Definition 3. For each α, i with 1 ≤ α, i ≤ n, let (χi
α, q

i
α) ∈ H1

per(Y )×L2
per(Y )

be the unique weak solution to the problem (35) with div F = A1(yαei). In
particular, we have

aY (χi
α,v)− (qi

α, div v)L2(Y ) = aY (yαei,v) for all v ∈ H1
per(Y ).
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Then by virtue of (33) and (36), we deduce that

(37) u1 = −χi
α(y)

∂u0
i

∂xα
+ ũ1 and p0 = −qi

α(y)
∂u0

i

∂xα
+ p̃0

for some functions ũ1(x, t) and p̃0(x, t). Substituting (37) into (31), we finally
derive

(38) ∂tu
0
j −

∂

∂xβ

(
ãij

αβ

∂u0
i

∂xα

)
+

∂

∂xj
p0 = f0

j

for each j = 1, . . . , n, where

p0 = p0(x, t) =
∫

Y

p0(x, t,y) dy

and

ãij
αβ =

∫

Y

[
aij

αβ(y)− akj
γβ(y)

∂

∂yγ
(χi

α)k(y)
]
dy(39)

=
∫

Y

akl
γδ(y)

∂

∂yγ

(
yαe

i
k − (χi

α)k(y)
) ∂

∂yδ
(yβe

j
l ) dy.

We can rewrite the constants ãij
αβ in another useful forms. Observe from the

definition of χi
α that

(40) aY (χi
α,w) = aY (yαei,w)

for all w ∈ H1
per(Y ) with divw = 0. Taking w = χj

β in (40), we deduce from
(34) and (39) that

(41) ãij
αβ = aY (yαei − χi

α, yβej) = aY (yαei − χi
α, yβej − χj

β).

Lemma 4.
ãij

αβ = ãαj
iβ = ãiβ

αj

and
ãij

αβξ
i
αξ

j
β ≥ λ̃|ξ|2 for all ξ ∈ S(n).

Here S(n) denotes the space of all n × n-real symmetric matrices and λ̃ is a
positive constant.

Proof. Since akl
γδ(y) = akδ

γl (y), it follows that aY (w, yβej) = aY (w, yjeβ) for
all w ∈ H1(Y ). Taking w = yαei − χi

α, we deduce that ãij
αβ = ãiβ

αj . Similarly,
since aY (yαei,w) = aY (yieα,w) for all w ∈ H1(Y ), it follows from (40) that

aY (χi
α,w) = aY (yαei,w) = aY (yieα,w) = aY (χα

i ,w)

for all w ∈ H1
per(Y ) with divw = 0. Taking w = χi

α − χα
i , we deduce that

χi
α = χα

i because
∫

Y
χi

α dy =
∫

Y
χα

i dy = 0 by Definition 3. Hence by virtue of
(41), we have

ãij
αβ = aY (yαei − χi

α, yβej) = aY (yαei, yβej)− aY (χi
α, yβej)

= aY (yieα, yβej)− aY (χα
i , yβej) = aY (yieα − χα

i , yβej) = ãαj
iβ .
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This proves the symmetry of ãij
αβ . To prove the ellipticity, let us suppose that

ãij
αβξ

i
αξ

j
β ≤ 0 for some ξ ∈ S(n). Then setting w = ξi

α(yαei − χi
α(y)), we have

0 ≥ ãij
αβξ

i
αξ

j
β = aY (w,w) ≥ λ

4

∫

Y

∣∣∣∣
∂wk

∂yγ
+
∂wγ

∂yk

∣∣∣∣
2

dy

and so
∂wk

∂yγ
+
∂wγ

∂yk
= 0 for 1 ≤ k, γ ≤ n.

Hence it follows from a classical result in mechanics (see [11] for instance)
that there is an anti-symmetric matrix η = (ηi

α) and a vector b such that
w(y) = η · y + b for all y ∈ Y . Noting that (η · y)k = ηk

αyα = ηi
αyαe

i
k for each

k, we deduce that

ξi
α(yαei − χi

α(y)) = ηi
αyαei + b or (ξi

α − ηi
α)yαei = ξi

αχ
i
α(y) + b.

Hence the periodicity of χi
α allows us to conclude that

ξ − η = 0 and so ξ = η = 0.

We have shown that ãij
αβξ

i
αξ

j
β > 0 for all ξ ∈ S(n) \ {0}, which implies the

ellipticity of ãij
αβ . The proof of Lemma 4 is completed. ¤

Remark 5. Assume that akl
γδ(y) = alk

δγ(y) for a.e. y ∈ Rn and all γ, δ, k, l. Then
it follows immediately from (34) and (41) that ãij

αβ = ãji
βα for all α, β, i, j.

In view of Lemma 4, we can adapt the proof of Theorem 1 to obtain the
corresponding well-posedness result for the homogenized problem:




∂tu0 + A0u0 +∇p0 = f0 in Ω× (0, T )
divu0 = g0 in Ω× (0, T )

u0 = u0
b on ∂Ω× (0, T )

u0 = u0 on Ω× {0},
where the homogenized operator A0 is given by

(
A0v

)
j

= − ∂

∂xβ

(
ãij

αβ

∂vi

∂xα

)
(j = 1, . . . , n).

Theorem 6. Let the data f0, g0,u0
b and u0

0 satisfy the following conditions:

f0 ∈ L2(0, T ;H−1(Ω)), div G0 = g0 in Ω× (0, T ),
G0 = u0

b on ∂Ω× (0, T ) and u0
0 −G0(0) ∈ H

for some G0 ∈ WT . Then there exists a unique weak solution u0 to the ho-
mogenized problem (HP 0) in the sense that

(42) u0 −G0 ∈ VT

and

(43) (u0(t)− u0
0,w)L2(Ω) +

∫ t

0

a0(u0(τ),w) dτ =
∫ t

0

〈f0(τ),w〉 dτ
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for all t ∈ [0, T ] and w ∈ V . Here the bilinear form a0 on H1(Ω) is given by

(44) a0(v,w) =
∫

Ω

ãij
αβ

∂vi

∂xα

∂wj

∂xβ
dx for v,w ∈ H1(Ω).

4. The homogenization theorem

We are now ready to prove the following homogenization theorem.

Theorem 7. For each ε > 0, let uε be the unique weak solution to the problem
(HP ε) with the data fε, gε,uε

b and uε
0 satisfying the conditions (14), (15) and

(16). Assume further that

(45)





fε → f0 strongly in L2(0, T ;H−1(Ω))
gε → g0 strongly in L2(0, T ;L2(Ω))

Gε → G0 weakly in WT

uε
0 → u0

0 weakly in L2(Ω).

Then we have

(46)





uε → u0 weakly in L2(0, T ;H1(Ω))
∂tuε → ∂tu0 weakly in L2(0, T ;V ′)

aij
αβ( ·ε ) ∂uε

i

∂xα
→ ãij

αβ
∂u0

i

∂xα
weakly in L2(0, T ;L2(Ω)),

where u0 is the unique weak solution to the homogenized problem (HP 0) with
the data f0, g0 = div G0,u0

b = G0|∂Ω×(0,T ) and u0
0.

Remark 8. From (46), we can also deduce that

(47) uε → u0 strongly in L2(0, T ;L2(Ω))

and

(48) (uε,w)L2(Ω) → (u0,w)L2(Ω) uniformly on [0, T ]

for all w ∈ L2(Ω).

Proof of Remark 8. Let us denote

vε = uε −Gε and v0 = u0 −G0.

Then since Gε → G0 weakly in WT , it follows from (46) that vε → v0 weakly
in VT . Hence using the well-known compactness result VT ↪→↪→ L2(0, T ;H),
we first deduce that

(49) vε → v0 strongly in L2(0, T ;L2(Ω)).

Next, we will show that

(50) (vε,w)L2(Ω) → (v0,w)L2(Ω) uniformly on [0, T ]

for all w ∈ L2(Ω). It suffices to show that if w ∈ L2(Ω) and εm → 0
as m → ∞, then the sequence {(vεm ,w)L2(Ω)} has a subsequence converg-
ing to (v0,w)L2(Ω) uniformly on [0, T ]. This is proved first for each w ∈
V . Suppose that εm → 0 as m → ∞. Then it follows from (49) that
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∫ T

0
||vεm(t) − v0(t)||2L2(Ω) dt → 0 as m → ∞. Hence there exists a subse-

quence of {εm}, still denoted by {εm}, such that vεm(t0) → v0(t0) strongly
in L2(Ω) for at least one t0 ∈ [0, T ]. Moreover, since ∂tvε → ∂tv0 weakly in
L2(0, T ;V ′), we have

(vεm(t),w)L2(Ω) = (vεm(t0),w)L2(Ω) +
∫ t

t0

〈∂tvεm(τ),w〉 dτ

→ (v0(t0),w)L2(Ω) +
∫ t

t0

〈∂tv0(τ),w〉 dτ

= (v0(t),w)L2(Ω) for all t ∈ [0, T ],

which proves the pointwise convergence of {(vεm ,w)L2(Ω)} on [0, T ] as ε→ 0.
The uniform convergence now follows from the Ascoli-Arzelà theorem because
even the whole family {(vε,w)L2(Ω)}ε>0 is equicontinuous on [0, T ]. In fact, if
0 ≤ t < t+ h ≤ T , then

∣∣(vε(t+ h)− vε(t),w)L2(Ω)

∣∣ =

∣∣∣∣∣
∫ t+h

t

〈∂tvε(τ),w〉 dτ
∣∣∣∣∣

≤
(∫ t+h

t

||∂tvε(τ)||V ′ dτ
)
||w||V ≤ Ch

1
2

for some constant C independent of t and ε. This proves (50) for all v ∈ V .
A simple density argument allows us to deduce (50) for all v ∈ H. Finally,
using the Helmholtz projection of L2(Ω) onto H, we easily deduce (50) for all
v ∈ L2(Ω) because vε(t),v0(t) ∈ H for all t ∈ [0, T ].

Using the embedding result WT ↪→↪→ L2(0, T ;L2(Ω)), we can also adapt
the above argument to show that

Gε → G0 strongly in L2(0, T ;L2(Ω)).

and
(Gε,w)L2(Ω) → (G0,w)L2(Ω) uniformly on [0, T ]

for all w ∈ L2(Ω). This completes the proofs of (47) and (48). ¤

Proof of Theorem 7. We have only to show that for each sequence {εm} with
εm → 0, {uεm} has a subsequence converging to a (unique by Theorem 6) weak
solution to the homogenized problem (HP 0). Let us denote

εmξj
β = εmξj

β(x, t) = aij
αβ

(
x
εm

)
∂uεm

i

∂xα
(x, t).

Then by virtue of Theorem 1, the sequences {uεm} and { εmξj
β} are εm-uniform-

ly bounded in WT + VT and L2(0, T ;L2(Ω)), respectively. Hence standard
compactness results enable us to extract subsequences, still denoted by {uεm}
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and { εmξj
β}, which converge to u ∈ WT + VT and ξj

β ∈ L2(0, T ;L2(Ω)),
respectively, in the following sense:

(51)





uεm → u weakly in L2(0, T ;H1(Ω))
∂tuεm → ∂tu weakly in L2(0, T ;V ′)

uεm → u strongly in L2(0, T ;L2(Ω))
εmξj

β → ξj
β weakly in L2(0, T ;L2(Ω))

and

(52) (uεm ,w)L2(Ω) → (u,w)L2(Ω) uniformly on [0, T ]

for all w ∈ L2(Ω). In view of (51) and (52), we easily deduce from (23) and
(24) as εm → 0 that

(53) u−G0 ∈ VT

and

(54)
∫

Ω

(u(t)− u0) ·w dx+
∫ t

0

∫

Ω

ξj
β

∂wj

∂xβ
dx dτ =

∫ t

0

〈f(τ),w〉 dτ

for all t ∈ [0, T ] and w ∈ V . Hence to prove the theorem, it remains to show
that

(55) ξj
β = ãij

αβ

∂ui

∂xα
for each 1 ≤ j, β ≤ n,

which implies, combined with (53) and (54), that u is a weak solution to the
homogenized problem (HP 0).

Our proof of (55) relies on Tartar’s classical method of oscillating test func-
tions; see [2] and [5] for convenient references. To apply this method, we first
reduce (24) to an equivalent weak formulation with general test functions in
H1

0(Ω) allowed. Let t ∈ [0, T ] be fixed. Then the validity of (24) for all v ∈ V
implies that the mapping

w 7→ (uε(t)− uε
0,w)L2(Ω) +

∫ t

0

aε(uε(τ),w) dτ −
∫ t

0

〈fε(τ),w〉 dτ

is a bounded linear functional on H1
0(Ω) vanishing identically on V . Hence it

follows from a standard result in fluid mechanics (see [7] or [13]) that there
exists a unique scalar field P ε(t) ∈ L2(Ω)/R such that

(56)
(uε(t)− uε

0,w)L2(Ω) +
∫ t

0

aε(uε(τ),w) dτ − (P ε(t), divw)L2(Ω)

=
∫ t

0

〈fε(τ),w〉 dτ

for all w ∈ H1
0(Ω). Moreover, it can be shown that P ε ∈ C([0, T ];L2(Ω)) and

(57) ||P ε||C([0,T ];L2(Ω)) ≤ C
(
||uε

0||2L2(Ω) + ||Gε||2WT
+ ||fε||2L2(0,T ;H−1(Ω))

)
.
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To show this, let 0 ≤ s ≤ t ≤ T be fixed. Then from (56), we derive
(58)

(uε(t)− uε(s),w)L2(Ω) +
∫ t

s

aε(uε(τ),w) dτ − (P ε(t)− P ε(s),divw)L2(Ω)

=
∫ t

s

〈fε(τ),w〉 dτ.

On the other hand, by virtue of a classical result due to Bogovskǐi (see [3] and
[7]), there exists a vector field wε(s, t) ∈ H1

0(Ω) such that

divwε(s, t) = P ε(t)− P ε(s) and ||wε(s, t)||H1(Ω) ≤ C||P ε(t)− P ε(s)||L2(Ω).

Hence from (58), we deduce that

||P ε(t)− P ε(s)||2L2(Ω)

≤ C||uε(t)− uε(s)||L2(Ω)||wε(s, t)||H1(Ω)

+ C

(∫ t

s

||∇uε(τ)||L2(Ω) dτ +
∫ t

s

||fε(τ)||H−1(Ω) dτ

)
||wε(s, t)||H1(Ω)

and so

||P ε(t)− P ε(s)||L2(Ω)

≤ C

(
||uε(t)− uε(s)||L2(Ω) +

∫ t

s

||∇uε(τ)||L2(Ω) dτ +
∫ t

s

||fε(τ)||H−1(Ω) dτ

)
,

which immediately implies that ||P ε(t)− P ε(s)||L2(Ω) → 0 as |t− s| → 0, that
is, P ε ∈ C([0, T ];L2(Ω)). The uniform estimate (57) can be also deduced from
(56) and Theorem 1 by choosing wε(t) ∈ H1

0(Ω) such that divwε(t) = P ε(t)
and ||wε(t)||H1(Ω) ≤ C||P ε(t)||L2(Ω). Similarly, adapting the above argument,
we can show that there exists a unique P ∈ C([0, T ];L2(Ω)/R) such that

(59)
(u(t)− u0,w)L2(Ω) +

∫ t

0

∫

Ω

ξj
β

∂wj

∂xβ
dx dτ − (P (t), divw)L2(Ω)

=
∫ t

0

〈f(τ),w〉 dτ

for all t ∈ [0, T ] and w ∈ H1
0(Ω). It follows easily from (51), (52), (56) and

(59) that

(60) (P εm , w)L2(Ω) → (P,w)L2(Ω) uniformly on [0, T ]

for all w ∈ L2(Ω).
Next, we introduce the adjoints A∗

1 and a∗Y of A1 and aY , respectively,
defined by

(A∗
1v)j = − ∂

∂yβ

(
aji

βα(y)
∂vi

∂yα

)
(j = 1, . . . , n)
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and

a∗Y (v,w) =
∫

Y

alk
δγ(y)

∂vk

∂yγ

∂wl

∂yδ
dy = aY (w,v).

Let us fix γ, k with 1 ≤ γ, k ≤ n. Then the proof of Lemma 2 can be easily
adapted to deduce the existence of a unique pair (χ̂k

γ , q̂
k
γ) in H1

per(Y )× L2(Y )
such that

(61)





A∗
1χ̂

k
γ −∇q̂k

γ = A∗
1(yγek) in Y

divχ̂k
γ = 0 in Y∫

Y
χ̂k

γ dy = 0,
∫

Y
q̂k
γ dy = 0.

Note in particular that

(62) aY (v, χ̂k
γ) = aY (v, yγek)

for all v ∈ H1
per with divv = 0. For the sake of simplicity, let us denote

χ̂ = χ̂k
γ , q̂ = q̂k

γ , ŵ = yγek − χ̂, χ̂ε(x) = εχ̂
(x
ε

)
,

q̂ε(x) = εq̂
(x
ε

)
, ŵε(x) = εŵ

(x
ε

)
and W = xγek.

Then since χ̂, q̂ are periodic and ŵε = W−χ̂ε, it follows from a standard result
(see [5, Chapter 2] for instance) that

(63)





ŵε → W weakly in H1(Ω)
ŵε → W strongly in L2(Ω)
q̂ε → 0 weakly in L2(Ω)

as ε→ 0.

Moreover, it is easy to show (see [5, Chapter 4]) that (ŵε, q̂ε) satisfies

(Aε)∗ ŵε −∇q̂ε = 0 in Ω,

that is,

(64) aε(v, ŵε) +
∫

Ω

q̂ε divv dx = 0 for all v ∈ H1
0(Ω).

Now let ϕ ∈ C∞c (Ω) be fixed. Then taking v = ϕŵεm in (56) with ε = εm,
we have

(uεm(t)− uεm
0 , ϕŵεm)L2(Ω) +

∫ t

0

aεm(uεm(τ), ϕŵεm) dτ

−(P εm(t),div (ϕŵεm))L2(Ω) =
∫ t

0

〈fεm(τ), ϕŵεm〉 dτ.

Taking v = ϕuεm(τ) in (64) with ε = εm and integrating over (0, t), we also
have

∫ t

0

aεm(ϕuεm(τ), ŵεm) dτ +
∫

Ω

q̂εm div
(∫ t

0

ϕuεm(τ) dτ
)
dx = 0.
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Subtraction of these two identities yields

(65)

∫ t

0

(aεm(uεm(τ), ϕŵεm)− aεm(ϕuεm(τ), ŵεm)) dτ

=
∫

Ω

(
P εm(t)div (ϕŵεm) + q̂εm div

(∫ t

0

ϕuεm(τ) dτ
))

dx

+
∫ t

0

〈fεm(τ), ϕŵεm〉 dτ − (uεm(t)− uεm
0 , ϕŵεm)L2(Ω).

We calculate the limit of each term in (65) as εm → 0. First, it follows imme-
diately from (45), (52) and (63) that

(uεm(t)− uεm
0 , ϕŵεm)L2(Ω) → (u(t)− u0, ϕW)L2(Ω)

and
∫ t

0

〈fεm(τ), ϕŵεm〉 dτ →
∫ t

0

〈f(τ), ϕW〉 dτ

as εm → 0 for all t ∈ [0, T ]. Using (23), (45), (51), (60), (61) and (63), we
obtain

∫

Ω

(
P εm(t)div (ϕŵεm) + q̂εm div

(∫ t

0

ϕuεm(τ) dτ
))

dx

=
∫

Ω

(
P εm(t)(∇ϕ · ŵεm + ϕdivW) + q̂εm

∫ t

0

(∇ϕ · uεm(τ) + ϕgεm(τ)) dτ
)
dx

→
∫

Ω

P (t) div(ϕW) dx as εm → 0 for all t ∈ [0, T ].

Finally, noting that

∇ŵεm(x) = ∇yŵ
(

x
εm

)
and ŵ is periodic,

we deduce that
∫ t

0

(aεm(uεm(τ), ϕŵεm)− aεm(ϕuεm(τ), ŵεm)) dτ

=
∫ t

0

∫

Ω

aij
αβ

( ·
εm

)[
∂uεm

i

∂xα

∂ϕ

∂xβ
ŵεm

j − ∂ϕ

∂xα
uεm

i

∂ŵεm
j

∂xβ

]
dx dτ

=
∫ t

0

∫

Ω

εmξj
β

∂ϕ

∂xβ
ŵεm

j dx dτ −
∫ t

0

∫

Ω

(
aij

αβ

∂ŵj

∂yβ

)( ·
εm

)
∂ϕ

∂xα
uεm

i dx dτ

→
∫ t

0

∫

Ω

ξj
β

∂ϕ

∂xβ
Wj dx dτ −

(∫

Y

aij
αβ

∂ŵj

∂yβ
dy

)(∫ t

0

∫

Ω

∂ϕ

∂xα
ui dx dτ

)
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as εm → 0 for all t ∈ [0, T ]. Hence letting εm → 0 in (65), we have
∫ t

0

∫

Ω

ξj
β

∂ϕ

∂xβ
Wj dx dτ −

(∫

Y

aij
αβ

∂ŵj

∂yβ
dy

) (∫ t

0

∫

Ω

∂ϕ

∂xα
ui dx dτ

)

=
∫

Ω

P (t) div(ϕW) dx+
∫ t

0

〈f(τ), ϕW〉 dτ − (u(t)− u0, ϕW)L2(Ω).

Therefore, combining this and (59) with w = ϕW taken, we conclude that
∫ t

0

∫

Ω

ξj
β

∂Wj

∂xβ
ϕdx dτ = −

(∫

Y

aij
αβ

∂ŵj

∂yβ
dy

)(∫ t

0

∫

Ω

∂ϕ

∂xα
ui dx dτ

)

for all t ∈ [0, T ] and ϕ ∈ C∞c (Ω), which implies that

ξj
β

∂Wj

∂xβ
=

(∫

Y

aij
αβ

∂ŵj

∂yβ
dy

)
∂ui

∂xα
in Ω× (0, T ).

Then recalling that W = xγek and ŵ = yγek − χ̂k
γ , we immediately obtain

ξk
γ =

(∫

Y

aij
αβ

∂

∂yβ
(yγe

k
j − (χ̂k

γ)j) dy
)
∂ui

∂xα

and replacing the indices, we have

ξj
β =

(∫

Y

ail
αδ

∂

∂yδ
(yβe

j
l − (χ̂j

β)l) dy
)
∂ui

∂xα
.

Hence to prove (55), it remains to show that

(66) ãij
α,β =

∫

Y

(
aij

αβ − ail
αδ

∂

∂yδ
(χ̂j

β)l

)
dy.

But taking w = χ̂j
β in (40) and v = χi

α in (62), we have

aY (yαei, χ̂j
β) = aY (χi

α, χ̂
j
β) = aY (χi

α, yβej).

Using this result together with (34) and (39), we derive (66). We have com-
pleted the proof of Theorem 7. ¤

5. The corrector theorem

A formal asymptotic expansion of uε was derived in Section 3. Up to the
first order of ε, we have

(67) uε(x, t) = u0(x, t)− εχk
γ

(x
ε

) ∂u0
k

∂xγ
(x, t) + · · · .

Recall from Definition 3 that each pair (χ, q) = (χk
γ , q

k
γ) is the unique weak

solution in H1
per(Y )× L2

per(Y ) to the problem

(68)





A1χ+∇q = A1(yγek) in Y
divχ = 0 in Y∫

Y
χdy = 0,

∫
Y
q dy = 0.
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In particular, since (χk
γ , q

k
γ) ∈ H1

per(Y )×L2(Y ), we easily deduce from a stan-
dard result (see [5] for instance) that

(69)





(
χk

γ

)ε → 0 weakly in H1(Ω)(
χk

γ

)ε → 0 strongly in L2(Ω)(
qk
γ

)ε → 0 weakly in L2(Ω)

as ε→ 0, where
(
χk

γ

)ε
(x) = εχk

γ

(x
ε

)
and

(
qk
γ

)ε
(x) = εqk

γ

(x
ε

)
.

Hence it follows from the homogenization theorem, Theorem 7, that

uε +
(
χk

γ

)ε ∂u0
k

∂xγ
→ u0 weakly in L2(0, T ;H1(Ω))

as ε → 0, provided that u0 is sufficiently regular. However, this convergence
turns out to be strong as shown in the following corrector theorem.

Theorem 9. Assume in addition to the hypotheses of Theorem 7 that

(70) Gε → G0 strongly in WT and uε
0 → u0

0 strongly in L2(Ω).

Then it follows that

uε → u0 strongly in C([0, T ];L2(Ω)).

Moreover, if the homogenized limit u0 has the additional regularity

(71) u0 ∈ L2(0, T ;W2,n(Ω)),

then we have

uε +
(
χk

γ

)ε ∂u0
k

∂xγ
→ u0 strongly in L2(0, T ;H1(Ω)).

Remark 10. Since u0 is a weak solution to the linear parabolic problem (HP 0)
with constant coefficients, the additional regularity (71) of u0 can be obtained
by assuming higher regularity of the data f0, g0, u0

b and u0
0.

To prove Theorem 9, we follow a general approach based on the previous
homogenization theorem and energy identities. See [4], [5] and [6]. First we
introduce the corrector operator Cε defined by

Cε(x)Φ = Φ−∇ (
χk

γ

)ε
(x)Φk

γ = Φ−∇yχ
k
γ

(x
ε

)
Φk

γ

for all n× n-matrices Φ = (Φk
γ). We can rewrite Cε as

Cε(x)Φ = ∇ (
wk

γ

)ε
(x)Φk

γ = ∇ywk
γ

(x
ε

)
Φk

γ ,

where

wk
γ(y) = yγek − χk

γ(y) and
(
wk

γ

)ε
(x) = εwk

γ

(x
ε

)
= xγek − (

χk
γ

)ε
(x).

The crucial steps of our proof of Theorem 9 are to prove the following two
lemmas.
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Lemma 11. For each γ, k with 1 ≤ γ, k ≤ n, the pair
((

wk
γ

)ε
,
(
qk
γ

)ε) satisfies

Aε
(
wk

γ

)ε
+∇ (

qk
γ

)ε
= 0, div

(
wk

γ

)ε
= div(xγek) in Ω,

((
wk

γ

)ε
,
(
qk
γ

)ε
)
∈ W1,r(Ω)× Lr(Ω) for some r ∈ (2,∞)

and ((
wk

γ

)ε
,
(
qk
γ

)ε
)
→ (

xγek, 0
)

weakly in W1,r(Ω)× Lr(Ω).

Lemma 12. Let the conditions (45) and (70) be satisfied by the data. For each
fixed matrix-valued function

Φ =
(
Φi

α

)
with Φi

α ∈ C∞c (Ω× (0, T )) for each α, i,

we define a function ρε = ρε
Φ on [0, T ] by

ρε(t) =
1
2
||vε(t)− v0(t)||2L2(Ω)

+
∫ t

0

∫

Ω

aij
αβ

( ·
ε

) (
∂uε

i

∂xα
− (CεΦ)i

α

) (
∂uε

j

∂xβ
− (CεΦ)j

β

)
dxdτ

for all t ∈ [0, T ], where vε = uε −Gε and v0 = u0 −G0 as before.
Then we have

ρε → ρ0 strongly in C([0, T ]),
where

ρ0(t) = ρ0
Φ(t) =

∫ t

0

∫

Ω

ãij
αβ

(
∂u0

i

∂xα
− Φi

α

) (
∂u0

j

∂xβ
− Φj

β

)
dxdτ

for all t ∈ [0, T ].

Assuming the validity of two lemmas, we first prove Theorem 9.

Proof of Theorem 9. Let η > 0 be a small fixed number. Then since ∇u0 ∈
L2(0, T ;L2(Ω)), there exists a matrix-valued function Φ ∈ [C∞c (Ω× (0, T ))]n

such that
∣∣∣∣∇u0 − Φ

∣∣∣∣
L2(0,T ;L2(Ω))

≤ η. Let ρε
Φ and ρ0

Φ be the functions defined
in Lemma 12. Then it follows from (4) and (18) that

(72)

||uε − u0||2C([0,T ];L2(Ω)) + ||Sym (∇uε −CεΦ)||2L2(0,T ;L2(Ω))

≤ C||Gε −G0||2C([0,T ];L2(Ω)) + C||ρε
Φ||L∞(0,T )

≤ C||Gε −G0||2C([0,T ];L2(Ω)) + C||ρε
Φ − ρ0

Φ||L∞(0,T ) + Cη2.

Here for an n×n-matrix ξ = (ξi
α)1≤α,i≤n, we denote by Sym(ξ) the symmetric

part of ξ: Sym(ξ) =
(

1
2

(
ξi
α + ξα

i

))
1≤α,i≤n

. Hence using (70) and Lemma 12,
we have

lim sup
ε→0

||uε − u0||C([0,T ];L2(Ω)) ≤ Cη,

which implies that

(73) lim
ε→0

||uε − u0||C([0,T ];L2(Ω)) = 0
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because η > 0 is arbitrary.
Assume further that u0 ∈ L2(0, T ;W2,n(Ω)). Then since

∇u0 ∈ L2(0, T ;W1,n(Ω)) ↪→ L2(0, T ;L2r/(r−2)(Ω)),

the function Φ ∈ [C∞c (Ω× (0, T ))]n can be chosen so that

(74)
∣∣∣∣∇u0 − Φ

∣∣∣∣
L2(0,T ;L2r/(r−2)(Ω))

≤ η.

Recall from Lemma 11 that {∇ (
wk

γ

)ε}ε>0 is a bounded set in Lr(Ω). Hence
using (74), we have

(75)

∣∣∣∣Sym (∇uε −Cε∇u0
)∣∣∣∣

L2(0,T ;L2(Ω))

≤ ||Sym (∇uε −CεΦ)||L2(0,T ;L2(Ω)) +
∣∣∣∣CεΦ−Cε∇u0

∣∣∣∣
L2(0,T ;L2(Ω))

≤ ||Sym (∇uε −CεΦ)||L2(0,T ;L2(Ω)) + Cη.

Combining (70), (72), (75) and Lemma 12, we deduce that

lim sup
ε→0

∣∣∣∣Sym (∇uε −Cε∇u0
)∣∣∣∣

L2(0,T ;L2(Ω))
≤ Cη

for any η > 0 and thus

(76) lim
ε→0

∣∣∣∣
∣∣∣∣Sym

(
∇uε −∇u0 +∇ (

χk
γ

)ε ∂u0
k

∂xγ

)∣∣∣∣
∣∣∣∣
L2(0,T ;L2(Ω))

= 0.

On the other hand, it follows from (71) and Lemma 11 that
(
χk

γ

)ε → 0 in L
2n

n−2 (Ω) and
∣∣∣
(
χk

γ

)ε
∣∣∣
∣∣∣∣∇
∂u0

k

∂xγ

∣∣∣∣ → 0 in L2(0, T ;L2(Ω)).

Using these results together with Theorem 7 and (76), we easily show that

(77) lim
ε→0

∣∣∣∣
∣∣∣∣uε − u0 +

(
χk

γ

)ε ∂u0
k

∂xγ

∣∣∣∣
∣∣∣∣
L2(0,T ;L2(Ω))

= 0

and

(78) lim
ε→0

∣∣∣∣
∣∣∣∣Sym∇

(
uε − u0 +

(
χk

γ

)ε ∂u0
k

∂xγ

)∣∣∣∣
∣∣∣∣
L2(0,T ;L2(Ω))

= 0.

Theorem 9 follows immediately from (73), (77), (78) and classical Korn’s in-
equality

||v||H1(Ω) ≤ C
(||v||L2(Ω) + ||Sym∇v||L2(Ω)

)
for all v ∈ H1(Ω);

see [11] or [14] for a proof. ¤

To complete the proof of Theorem 9, it remains to prove the two key lemmas,
Lemmas 11 and 12. We first provide a detailed proof of Lemma 12.

Proof of Lemma 12. Let Φ ∈ [C∞c (Ω× (0, T ))]n be fixed, and we write

ρε = ρε
1 + ρε

2 + ρε
3 + ρε

4 (ε > 0),
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where

ρε
1(t) =

1
2
||vε(t)− v0(t)||L2(Ω) +

∫ t

0

aε(uε(τ),uε(τ)) dτ,

ρε
2(t) = −

∫ t

0

∫

Ω

aij
αβ

( ·
ε

) ∂uε
i

∂xα
(CεΦ)j

β dxdτ,

ρε
3(t) = −

∫ t

0

∫

Ω

aij
αβ

( ·
ε

)
(CεΦ)i

α

∂uε
j

∂xβ
dxdτ

and

ρε
4(t) =

∫ t

0

∫

Ω

aij
αβ

( ·
ε

)
(CεΦ)i

α (CεΦ)j
β dxdτ.

We calculate the limit of each ρε
l as ε → 0. To calculate limε→0 ρ

ε
1, we will

make use of the following energy identity

(79)
||vε(t)||2L2(Ω) + 2

∫ t

0

aε(vε(τ),vε(τ)) dτ

= ||vε(0)||2L2(Ω) + 2
∫ t

0

〈f̃ε(τ),vε(τ)〉 dτ,

where f̃ε = fε− ∂tGε−AεGε ∈ L2(0, T ;H−1(Ω)). It should be noted that the
energy identity (79) holds for all ε ∈ [0,∞) and t ∈ [0, T ]. From (79), it also
follows that

(80)
||vε(t)||2L2(Ω) + 2

∫ t

0

aε(uε(τ),vε(τ)) dτ

= ||vε(0)||2L2(Ω) + 2
∫ t

0

〈(fε − ∂tGε) (τ),vε(τ)〉 dτ

for all ε ∈ [0,∞) and t ∈ [0, T ]. Hence ρε
1 can be rewritten as

(81)

ρε
1(t) =

1
2
||vε(t)− v0(t)||L2(Ω) +

∫ t

0

aε(uε(τ), (vε + Gε)(τ)) dτ

=
1
2
||vε(0)||L2(Ω) − (vε(t),v0(t))L2(Ω) +

1
2
||v0(t)||L2(Ω)

+
∫ t

0

aε(uε(τ),Gε(τ)) dτ +
∫ t

0

〈(fε − ∂tGε) (τ),vε(τ)〉 dτ

and by virtue of (45), (46), (48), (70) and (80) with ε = 0, we obtain

(82)

lim
ε→0

ρε
1(t) =

1
2
||v0(0)||L2(Ω) −

1
2
||v0(t)||L2(Ω) +

∫ t

0

a0(u0(τ),G0(τ)) dτ

+
∫ t

0

〈(f0 − ∂tG0
)
(τ),v0(τ)〉 dτ

=
∫ t

0

a0(u0(τ),u0(τ)) dτ for all t ∈ [0, T ].
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To calculate limε→0 ρ
ε
2, we write

ρε
2(t) = −

∫ t

0

∫

Ω

aij
αβ

( ·
ε

) ∂uε
i

∂xα

[
∂

∂xβ

((
wk

γ

)ε

j
Φk

γ

)
− (

wk
γ

)ε

j

∂Φk
γ

∂xβ

]
dxdτ

= −
∫ t

0

aε
(
uε,

(
wk

γ

)ε
Φk

γ

)
dτ +

∫ t

0

∫

Ω

aij
αβ

( ·
ε

) ∂uε
i

∂xα

(
wk

γ

)ε

j

∂Φk
γ

∂xβ
dxdτ.

Using (56), (46), (48), (60), Lemma 11 and then (59), we have
∫ t

0

aε
(
uε,

(
wk

γ

)ε
Φk

γ

)
dτ

=
(
P ε(t), div

(
(wk

γ)εΦk
γ

))
L2(Ω)

+
∫ t

0

〈fε,
(
wk

γ

)ε
Φk

γ〉 dτ

− (
uε(t)− uε(0), (wk

γ)εΦk
γ

)
L2(Ω)

→ (
P 0(t),div

(
xγekΦk

γ

))
L2(Ω)

+
∫ t

0

〈f0, xγekΦk
γ〉 dτ

− (
u0(t)− u0(0), xγekΦk

γ

)
L2(Ω)

=
∫ t

0

a0
(
u0, xγekΦk

γ

)
dτ =

∫ t

0

∫

Ω

ãij
αβ

∂u0
i

∂xα

∂(xγe
k
j Φk

γ)
∂xβ

dxdτ

and
∫ t

0

∫

Ω

aij
αβ

( ·
ε

) ∂uε
i

∂xα

(
wk

γ

)ε

j

∂Φk
γ

∂xβ
dxdτ →

∫ t

0

∫

Ω

ãij
αβ

∂u0
i

∂xα
(xγe

k
j )
∂Φk

γ

∂xβ
dxdτ

so that

lim
ε→0

ρε
2(t) = −

∫ t

0

∫

Ω

ãij
αβ

∂u0
i

∂xα

∂(xγe
k
j )

∂xβ
Φk

γ dxdτ

= −
∫ t

0

∫

Ω

ãij
αβ

∂u0
i

∂xα
Φj

β dxdτ for all t ∈ [0, T ].(83)

Using Lemma 11, (23), (47) and then (39), we can also calculate limε→0 ρ
ε
3

as follows:

ρε
3(t) = −

∫ t

0

∫

Ω

aij
αβ

( ·
ε

) ∂

∂xα

(
wk

γ

)ε

i

[
∂

∂xβ

(
Φk

γu
ε
j

)− uε
j

∂Φk
γ

∂xβ

]
dxdτ

= −
∫ t

0

aε
((

wk
γ

)ε
,Φk

γu
ε
)
dτ +

∫ t

0

∫

Ω

aij
αβ

( ·
ε

) ∂

∂xα

(
wk

γ

)ε

i
uε

j

∂Φk
γ

∂xβ
dxdτ

= −
∫ t

0

∫

Ω

(
qk
γ

)ε
div

(
Φk

γu
ε
)
dxdτ +

∫ t

0

∫

Ω

(
aij

αβ

∂

∂yα

(
wk

γ

)
i

) ( ·
ε

)
uε

j

∂Φk
γ

∂xβ
dxdτ

→
(∫

Y

aij
αβ

∂

∂yα

(
wk

γ

)
i
dy

) (∫ t

0

∫

Ω

u0
j

∂Φk
γ

∂xβ
dxdτ

)
=

∫ t

0

∫

Ω

ãkj
γβu

0
j

∂Φk
γ

∂xβ
dxdτ
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and thus

(84) lim
ε→0

ρε
3(t) = −

∫ t

0

∫

Ω

ãij
αβΦi

α

∂u0
j

∂xβ
dxdτ for all t ∈ [0, T ].

A similar calculation yields

ρε
4(t) =

∫ t

0

aε
((

wk
γ

)ε
,
(
wl

δ

)ε
Φk

γΦl
δ

)
dτ

−
∫ t

0

∫

Ω

(
aij

αβ

∂

∂yα

(
wk

γ

)
i

) ( ·
ε

) (
wl

δ

)ε

j

∂

∂xβ

(
Φk

γΦl
δ

)
dxdτ

→ −
∫ t

0

∫

Ω

ãkj
γβ

(
xδe

l
j

) ∂

∂xβ

(
Φk

γΦl
δ

)
dxdτ

and so

(85) lim
ε→0

ρε
4(t) =

∫ t

0

∫

Ω

ãij
αβΦi

αΦj
β dxdτ for all t ∈ [0, T ].

Combining (82)-(85), we have shown that

lim
ε→0

ρε(t) = ρ0(t) for all t ∈ [0, T ].

We now show that {ρε} actually converges uniformly on [0, T ]. For this purpose,
we have only to show that for every sequence {εm} with εm → 0, the sequence
{ρεm}m∈N converges uniformly on [0, T ] as m → ∞. But since the pointwise
convergence of {ρεm} was already shown, it suffices to show, by the Ascoli-
Arzelà theorem, that the family {ρεm}m∈N is equicontinuous on [0, T ]. Suppose
that 0 ≤ t < t+ h ≤ T . Then from (81) with ε = εm, we deduce that

|ρεm
1 (t+ h)− ρεm

1 (t)|

≤
∫ t+h

t

∣∣∣∣2
d

dτ
(vεm ,v0)L2(Ω) +

d

dτ
||v0||2L2(Ω)

∣∣∣∣ dτ

+ 2
∫ t+h

t

|aεm(uεm(τ),Gεm(τ)) + 〈(fεm − ∂tGεm) (τ),vεm(τ)〉| dτ.

Recall from (11) that

d

dt
(vεm(τ),v0(τ))L2(Ω) = 〈∂tvεm(τ),v0(τ)〉+ 〈∂tv0(τ),vεm(τ)〉

for a.e. τ ∈ [0, T ]. Moreover, since

(86) ||vε||VT + ||uε||L2(0,T ;H1(Ω)) ≤ C
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for some constant C independent of ε ≥ 0, it easily follows that

|ρεm
1 (t+ h)− ρεm

1 (t)|

≤ C

(∫ t+h

t

(||v0||2V + ||∂tv0||2V ′
)
dτ

) 1
2

+ C

(∫ t+h

t

||Gεm ||2H1(Ω) dτ

) 1
2

+ C

(∫ t+h

t

||∂tGεm ||2H−1(Ω) dτ

) 1
2

+ C

(∫ t+h

t

||fεm ||2H−1(Ω) dτ

) 1
2

.

This implies the equicontinuity of {ρεm
1 }m∈N on [0, T ] because v0 ∈ VT ,

Gεm → G0 strongly in WT and fεm → f0 strongly in L2(0, T ;H−1(Ω)). On
the other hand, by virtue of (86) and Lemma 11, we deduce that

|ρε
2(t+ h)− ρε

2(t)| ≤
∫ t+h

t

∣∣∣∣
∫

Ω

aij
αβ

( ·
ε

) ∂uε
i

∂xα
(CεΦ)j

β

∣∣∣∣ dxdτ

≤ C

∫ t+h

t

||∇uε(τ)||L2(Ω)||∇
(
wk

γ

)ε
Φk

γ(τ)||L2(Ω) dτ

≤ C(Φ)h
1
2

and similarly

|ρε
3(t+ h)− ρε

3(t)|+ |ρε
4(t+ h)− ρε

4(t)| ≤ C(Φ)
(
h

1
2 + h

)
,

which implies the equicontinuity of each of the families {ρε
2}ε>0 , {ρε

3}ε>0 and
{ρε

4}ε>0. This completes the proof of Lemma 12. ¤
Proof of Lemma 11. The first assertion can be easily deduced from (68). Sup-
pose next that there is some r > 2 such that (wk

γ , q
k
γ) ∈ W1,r(Y ) × Lr(Y ).

Then since χk
γ , qk

γ are periodic and wk
γ(y) = yγek − χk

γ(y), it follows from
a standard result (see [5, Chapter 2] for instance) that

{((
wk

γ

)ε
,
(
qk
γ

)ε)}
ε>0

is a weakly convergent sequence in W1,r(Ω) × Lr(Ω). Hence the second and
third assertions are immediate consequences of (69). Therefore, to complete
the proof of Lemma 11, it suffices to show that if (w, q) ∈ H1(Q2)×L2(Q2) is
a weak solution of the Stokes equations

(87) A1w −∇q = 0 in Q2 and div w = g ∈ L∞(Q2),

where Q2 = (−2, 2)n ⊂ Rn, then (w, q) ∈ W1,r(Y ) × Lr(Y ) for some r > 2.
This is an extension to the Stokes equations of a classical Lr-regularity result
due to Meyers [10] for general elliptic equations with L∞-coefficients; see [2]
for a quite simple proof. Here we provide a complete, different proof based on
the reverse Hölder inequality.

Suppose that x0 ∈ Q2 andB2R = B2R(x0) = {x ∈ Rn : |x−x0| < 2R} ⊂ Q2,
and let us denote

w =
1

|B2R|
∫

B2R

w dx and q =
1

|B2R|
∫

B2R

q dx.
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We first show that if ∇w ∈ Ls(B2R) and 1 < s <∞, then q ∈ Ls(B2R) and

(88) ||q − q||Ls(B2R) ≤ C||∇w||Ls(B2R)

for some positive constant C = C(n, s,M, λ), independent of R. For this, let
ψ ∈ L∞(B2R) be fixed. Then by virtue of Bogovskǐi’s result (see [3] and [7]),
there exist a vector field h in W1,s/(s−1)(Ω)∩H1

0(B2R) and a positive constant
C, independent of R, such that

divh = ψ − ψ in B2R and ||∇h||
L

s
s−1 (B2R)

≤ C||ψ − ψ||
L

s
s−1 (B2R)

,

where ψ = 1
|B2R|

∫
B2R

ψ dx. Taking h as a test function in the weak formulation
of (87), we deduce that

∫

B2R

(q − q)ψ dx =
∫

B2R

(q − q) divh dx

≤ C

∫

B2R

|∇w||∇h| dx

≤ C||∇w||Ls(B2R)||∇h||
L

s
s−1 (B2R)

≤ C||∇w||Ls(B2R)||ψ − ψ||
L

s
s−1 (B2R)

,

which proves (88) because ψ ∈ L∞(B2R) is arbitrary and

||ψ||
L

s
s−1 (B2R)

≤ ||ψ||
L

s
s−1 (B2R)

.

Hence to complete the proof of the lemma, it suffices to show that w ∈
W1,r(Q1) for some r > 2. To show this, let ϕ ∈ C∞c (B2R) be a smooth
cut-off function such that 0 ≤ ϕ ≤ 1, |∇ϕ| ≤ C

R in B2R and ϕ = 1 in BR. Then
denoting

v = (w −w)ϕ ∈ H1
0(Q2)

and taking ϕv as a test function in the weak formulation of (87), we deduce
that∫

aij
αβ

∂wi

∂xα

(
∂wj

∂xβ
ϕ2 + 2vjϕ

∂ϕ

∂xβ

)
dx =

∫
(q − q)

(
gϕ2 + 2v · ∇ϕ)

dx.

By a simple calculation, we have∫
aij

αβ

∂vi

∂xα

∂vj

∂xβ
dx ≤ C

∫
|∇w||w −w||∇ϕ|+ |w −w|2|∇ϕ|2 dx

+
∫
|q − q| (|g|+ |w −w||∇ϕ|) dx

and∫

BR

|∇w|2 dx ≤ C

R

∫

B2R

|∇w||w −w| dx+
C

R2

∫

B2R

|w −w|2 dx

+C
∫

B2R

|q − q||g| dx+
C

R

∫

B2R

|q − q||w −w| dx
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for some constant C independent of R. In view of Young’s inequality and the
pressure estimate (88), we also have
∫

BR

|∇w|2 dx ≤ Cθ

(∫

B2R

|g|2 dx+
1
R2

∫

B2R

|w −w|2 dx
)

+ θ

∫

B2R

|∇w|2 dx

for any small θ > 0. Hence using Poincaré-Sobolev inequality, we deduce that
(89)∫

BR

|∇w|2 dx ≤ Cθ

[∫

B2R

|g|2 dx+
1
R2

(∫

B2R

|∇w| 2n
n+2 dx

)n+2
n

]
+θ

∫

B2R

|∇w|2dx

for any small θ > 0. Therefore, applying a θ-version of the reverse Hölder
inequality (see [1] for instance), we conclude that w ∈ W1,r(Q1) for some r > 2.
One can also remove the θ-term in (89) using a standard covering argument
and then apply original Gehring’s result [8] to draw the same conclusion. See
[9] for details. This completes the proof of Lemma 11. ¤
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