References
- A. Bensoussan and J. Frehse, Regularity Results for Nonlinear Elliptic Systems and Applications, Applied Mathematical Sciences 151, Springer-Verlag, Berlin, 2002
- A. Bensoussan, J. L. Lions, and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam, 1978
- M. E. Bogovskii, Solution of the first boundary value problem for an equation of continuity of an incompressible medium, Dokl. Akad. Nauk SSSR 248 (1979), no. 5, 1037.1040. (Russian); English Transl.: Soviet Math Dokl. 20 (1979), 1094.1098
- S. Brahim-Stsmane, G. A. Francfort, and F. Murat, Correctors for the homogenization of the wave and heat equations, J. Math. Pures Appl. (9) 71 (1992), no. 3, 197.231
- D. Cioranescu and P. Donato, An Introduction to Homogenization, Oxford Lecture Series in Mathematics and its Applications, 17. The Clarendon Press, Oxford University Press, New York, 1999
- C. Conca, On the application of the homogenization theory to a class of problems arising in fluid mechanics, J. Math. Pures Appl. (9) 64 (1985), no. 1, 31.75
- G. P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations. Vol. I, Springer Tracts in Natural Philosophy, 38. Springer-Verlag, New York, 1994
- F. W. Gehring, The Lp-integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), 265.277 https://doi.org/10.1007/BF02392268
- M. Giaquinta and G. Modica, Nonlinear systems of the type of the stationary Navier-Stokes system, J. Reine Angew. Math. 330 (1982), 173.214
- N. G. Meyers, An Lpe-estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa (3) 17 (1963), 189.206
- J. Necas and I. Hlavacek, Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction, Studies in Applied Mechanics 3, Elsevier Scientific Publishing Co., Amsterdam-New York, 1980
- E. Sanchez-Palencia, Nonhomogeneous Media and Vibration Theory, Lecture Notes in Phys. 127, Springer-Verlag, Berlin, 1980
- R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, North-Holland, Amsterdam, 1984
- L. Wang, On Korn's inequality, J. Comput. Math. 21 (2003), no. 3, 321.324
Cited by
- Periodic homogenization of the non-stationary Navier–Stokes type equations vol.28, pp.3-4, 2017, https://doi.org/10.1007/s13370-016-0463-7