• 제목/요약/키워드: Navier-Stokes Flow

검색결과 1,581건 처리시간 0.024초

SPATIAL DECAY BOUNDS OF SOLUTIONS TO THE NAVIER-STOKES EQUATIONS FOR TRANSIENT COMPRESSIBLE VISCOUS FLOW

  • Liu, Yan;Qiu, Hua;Lin, Changhao
    • 대한수학회지
    • /
    • 제48권6호
    • /
    • pp.1153-1170
    • /
    • 2011
  • In this paper, spatial decay estimates for the time dependent compressible viscous isentropic flow in a semi-infinite three dimensional pipe are derived. An upper bound for the total energy in terms of the initial boundary data is obtained as well. The results established in this paper may be viewed as a version of Saint-Venant's principle in transient compressible Navier-Stokes flow.

선체주위 난류유동장의 해석에 관한 연구 (A Study on Turbulent Flow Fields around Ships)

  • 이승희;박종진
    • 한국전산유체공학회지
    • /
    • 제1권1호
    • /
    • pp.64-70
    • /
    • 1996
  • Three dimensional turbulent flow fields around ships are simulated by a numerical method. Reynolds Averaged Navier-Stokes equations are used where Reynolds stresses are approximated by Baldwin-Lomax and Sub-Grid Scale(SGS) turbulence models. Body-fitted coordinate system is introduced to conform three dimensional ship geometries. The governing equations are discretized by a finite volume method. Temporal derivatives are approximated by the forward differencing and the convection terms are approximated by the QUICK or Kawamura scheme. The 2nd-order centered differencing is used for other spatial derivatives. Pressure and velocity fields are simultaneously iterated by the Highly Simplified Marker-And-Cell method. To verify the numerical method and turbulence models, flow fields around ships are simulated and compared to the experiments.

  • PDF

Navier-Stokes 방정식을 이용한 초음속 제트 추진 비행체 후방의 유동해석 (Navier-Stokes Computations of Supersonic Flow over Missile Afterbodies Containing a Centered Propulsive Jet)

  • 윤병국;정명균
    • 대한기계학회논문집
    • /
    • 제16권2호
    • /
    • pp.356-368
    • /
    • 1992
  • The strongly interactive flow field near a missile afterbody containing a centered exhaust jet is numerically investigated. The thin shear layer and full formulation of compressible, Reynolds I averaged Navier-Stokes equations are solved. A time-dependent implicit numericals algorithm is used to obtain solution for a variety of flow conditions. Turbulence closure is implemented by the Baldwin-Lomax algebraic eddy viscosity model. An adaptive grid technique is adopted to resolve flow regimes with large gradients and to improve the accuracy and efficiency of the computation, Numerical results show good agreemement with experimental data in all regimes.

예조건화 압축성 알고리즘에 의한 저마하수 유동장 해석기법 (Preconditioned Compressible Navier- Stokes Algorithm for Low Mach Number Flows)

  • 고현;윤웅섭
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 춘계 학술대회논문집
    • /
    • pp.35-42
    • /
    • 1998
  • Time marching algorithms applied to compressible Navier-Stokes equation have a convergence problem at low Mach number. It is mainly due to the eigenvalue stiffness and pressure singularity as Mach number approaches to zero. Among the several methods to overcome the shortcomings of time marching scheme, time derivative preconditioning method have been used successfully. In this numerical analysis, we adopted a preconditioner of K.H. Chen and developed a two-dimensional, axisymmetric Navier-Stokes program. The steady state driven cavity flow and backward facing step flow problems were computed to confirm the accuracy and the robustness of preconditioned algorithm for low Mach number flows. And the transonic and supersonic flows insice the JPL axisymmetric nozzle internal flow is exampled to investigate the effects of preconditioning at high Mach number flow regime. Test results showed excellent agreement with the experimental data.

  • PDF

삼차원 점성 효과를 고려한 축류 압축기의 성능에 대한 수치해석 (Numerical Analysis for the Performance of an Axial-flow Compressor with Three-Dimensional Viscous Effect)

  • 한용진;김광용;고성호
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 추계 학술대회논문집
    • /
    • pp.182-187
    • /
    • 2003
  • Numerical analysis of three-dimensional vicous flow is used to compute the design speed operating line of a transonic axial-flow compressor. The Navier-Stokes equation was solved by an explicit finite-difference numerical scheme and the Baldwin-Lomax turbulence model was applied. A spatially-varying time-step and an implicit residual smoothing were used to improve convergence. Two-stage axial compressor of a turboshaft engine developed KARI was chosen for the analysis. Numerical results show reasonably good agreements with experimental measurements made by KARI. Numerical solutions indicate that there exist a strong shock-boundary layer interaction and a subsequent large flow separation. It is also observed that the shock is moved ahead of the blade passage at near-stall condition.

  • PDF

The Analysis of Liquid Metal Flow Characteristics in the Annular Passage of an Electromagnetic Pump

  • Kim, Chang-Eob;Jeon, Mun-Ho;Kwon, Jeong-Tae;Lim, Hyo-Jae;Lee, Suk-Won
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권2호
    • /
    • pp.270-275
    • /
    • 2010
  • An electromagnetic pump using a tubular induction motor (TLIM) has been proposed to pump liquid metal fluids. TLIM has been designed for liquid metal flow systems with a motor with a thrust force of 40~77[N]. The flow characteristics have been investigated by solving the Navier-Stokes equation, where the Lorentz force was included simply by considering it as a constant in the Navier-Stokes equation. A wood metal was chosen to simulate the liquid metal. The effect of Lorentz force on the flow rate was investigated. An experiment was conducted and its results were compared with those of the simulation. The simulation result showed an overestimation of about 17% compared with the experimental one.

비정상 CFD 코드를 이용한 주기성 하모닉 진동 평판 위의 점성유동 수치해석 (Numerical Analysis of Viscous Flow on the Periodic Oscillating Flat Plate using Unsteady CFD Code)

  • 이은석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.1000-1002
    • /
    • 2017
  • 본 연구에서는 내재적 이중시간 전진기법을 이용한 비정상 Navier-Stokes 코드를 개발하였다. 내재적 이중시간 전진기법은 가상시간에 대한 새로운 잔류항을 도입하는 개념으로 비정상 잔류항에 실시간 미분항을 더한 잔류항을 가상시간으로 푸는 기법이다. 비정상 코드 검증 방법으로 Stokes 2nd 문제인 '주기성 하모닉 진동을 하는 평판 위의 층류 유동'을 해석하였다. 계산된 속도분포와 마찰계수를 방정식 이론적 해와 비교한 결과 매우 근접한 수치해를 얻을 수 있었다.

  • PDF

저 Reynolds수 에 있어서의 원통주위의 흐름에 관한 연구 (A Study on the Flow around the Circular Cylinder at Low Reynolds Number)

  • 이은선;송강섭
    • 한국항해학회지
    • /
    • 제9권2호
    • /
    • pp.43-63
    • /
    • 1985
  • As a circular cylinder has a comparatively simple shape and becomes a basic problem for flows around other various shapes of bodies, the problem of two-dimensional viscous flow around the circular cylinder has been investigated, both theoretically and experimentally. But not a few problems are left unsolved. It is well known that the calculations are successfully made with the approximations of Stokes or Oseen for very low Reynolds numbers, but as Reynolds number is increased, Oseen's approximations as well as Stokes's ones become more and more remote from the exact solution of the Navier-Stokes equations. Therefore, in this paper, the authors transform the Navier-Stokes equations into the finite difference equations in the steady two-dimensional viscous flow at Reynolds number up to 45, and then solve the solution of the Navier-Stokes equations numerically. Also, the authors examine the accuracy of the solution by means of flow visualization with aluminum powder. The main results are as follows; (1) The critical Reynolds number at which twin vortices begin to form in the rear of the circular cylinder is found to be 6 in the experiment and 4 in the numerical solution. (2) As Reynolds number is increased, it is proved that the ratio of the length of the twin vortices to the diameter is grown almost linearly, both experimentally and numerically. (3) Separation angle is also increased according to reynolds number. But it is found that it would converge into 101.3 degrees, both experimentally and numerically.

  • PDF

원심다익송풍기 유동의 삼차원 Navier-Stakes 해석 (Three-Dimensional Navier-Stokes Analysis of the Flow through A Multiblade Centrifugal Fan)

  • 서성진;첸시;김광용;강신형
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1998년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.42-48
    • /
    • 1998
  • Numerical study is presented for the analysis of three-dimensional incompressible turbulent flows in multiblade centrifugal fan. Reynolds-averaged Navier-Stokes equations with standard k - $\epsilon$ turbulence model are transformed to non-orthogonal curvilinear coordinates, and are discretized with finite volume approximations. Linear Upwind Differencing Scheme(LUDS) is used to approximate the convection terms in the governing equations. SIMPLEC algorithm is used as a velocity-pressure correction procedure. The computational area is divided into three blocks; core, impeller and scroll, which are linked by multi-block method. The flow inside of the fan is regarded as steady flow, and mathematical formula established from the cascade theory and empirical coefficient are employed to simulate tile flow through the impeller. From comparisons between the computational results and the experimental data, the validity of the mathematical formula for the blade forces was examined and good results were obtained qualitatively. Hence, we can get the flow characteristics of multi-blade centrifugal fan and it will be a corner stone of the development of the multiblade centrifugal fan.

  • PDF

SENSITIVITY ANALYSIS OF A SHAPE CONTROL PROBLEM FOR THE NAVIER-STOKES EQUATIONS

  • Kim, Hongchul
    • Korean Journal of Mathematics
    • /
    • 제25권3호
    • /
    • pp.405-435
    • /
    • 2017
  • We deal with a sensitivity analysis of an optimal shape control problem for the stationary Navier-Stokes system. A two-dimensional channel flow of an incompressible, viscous fluid is examined to determine the shape of a bump on a part of the boundary that minimizes the viscous drag. By using the material derivative method and adjoint variables for a shape sensitivity analysis, we derive the shape gradient of the design functional for the model problem.