• Title/Summary/Keyword: Navier problem

Search Result 215, Processing Time 0.03 seconds

ESTIMATES FOR EIGENVALUES OF NEUMANN AND NAVIER PROBLEM

  • Deng, Yanlin;Du, Feng;Hou, Lanbao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1315-1325
    • /
    • 2021
  • In this paper, we firstly prove some general inequalities for the Neumann eigenvalues for domains contained in a Euclidean n-space ℝn. Using the general inequalities, we can derive some new Neumann eigenvalues estimates which include an upper bound for the (k + 1)th eigenvalue and a new estimate for the gap of the consecutive eigenvalues. Moreover, we give sharp lower bound for the first eigenvalue of two kinds of eigenvalue problems of the biharmonic operator with Navier boundary condition on compact Riemannian manifolds with boundary and positive Ricci curvature.

ON THE LINEARIZATION OF DEFECT-CORRECTION METHOD FOR THE STEADY NAVIER-STOKES EQUATIONS

  • Shang, Yueqiang;Kim, Do Wan;Jo, Tae-Chang
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1129-1163
    • /
    • 2013
  • Based on finite element discretization, two linearization approaches to the defect-correction method for the steady incompressible Navier-Stokes equations are discussed and investigated. By applying $m$ times of Newton and Picard iterations to solve an artificial viscosity stabilized nonlinear Navier-Stokes problem, respectively, and then correcting the solution by solving a linear problem, two linearized defect-correction algorithms are proposed and analyzed. Error estimates with respect to the mesh size $h$, the kinematic viscosity ${\nu}$, the stability factor ${\alpha}$ and the number of nonlinear iterations $m$ for the discrete solution are derived for the linearized one-step defect-correction algorithms. Efficient stopping criteria for the nonlinear iterations are derived. The influence of the linearizations on the accuracy of the approximate solutions are also investigated. Finally, numerical experiments on a problem with known analytical solution, the lid-driven cavity flow, and the flow over a backward-facing step are performed to verify the theoretical results and demonstrate the effectiveness of the proposed defect-correction algorithms.

Optimal Control of steady Incompressible Navier-Stokes Flows (Navier-Stokes 유체의 최적 제어)

  • Bark, Jai-Hyeong;Hong, Soon-Jo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.661-674
    • /
    • 2002
  • The objective of this study is to develop efficient numerical method to enable solution of optimal control problems of Navier-Stokes flows and to apply these technique to the problem of viscous drag minimization on a bluff body by controlling boundary velocities on the surface of the body. In addition to the industrial importance of the drag reduction problem, it serves as a model for other more complex flow optimization settings, and allows us to study, modify, and improve the behavior of the optimal control methods proposed here. The control is affected by the suction or injection of fluid on portions of the boundary, and the objective function represents the rate at which energy is dissipated in the fluid. This study shows how reduced Hessian successive quadratic programming method, which avoid converging the flow equations at each iteration, can be tailored to these problems.

EXISTENCE OF THREE SOLUTIONS FOR A CLASS OF NAVIER QUASILINEAR ELLIPTIC SYSTEMS INVOLVING THE (p1, …, pn)-BIHARMONIC

  • Li, Lin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.57-71
    • /
    • 2013
  • In this paper, we establish the existence of at least three solutions to a Navier boundary problem involving the ($p_1$, ${\cdots}$, $p_n$)-biharmonic systems. We use a variational approach based on a three critical points theorem due to Ricceri [B. Ricceri, A three critical points theorem revisited, Nonlinear Anal. 70 (2009), 3084-3089].

REGULARITY OF 3D NAVIER-STOKES EQUATIONS WITH SPECTRAL DECOMPOSITION

  • Jeong, Hyosuk
    • Honam Mathematical Journal
    • /
    • v.38 no.3
    • /
    • pp.583-592
    • /
    • 2016
  • In this paper, we consider the global existence of strong solutions to the incompressible Navier-Stokes equations on the cubic domain in $R^3$. While the global existence for arbitrary data remains as an important open problem, we here provide with some new observations on this matter. We in particular prove the global existence result when ${\Omega}$ is a cubic domain and initial and forcing functions are some linear combination of functions of at most two variables and the like by decomposing the spectral basis differently.

Discretization of Pressure-Poisson Equation for Solving Incompressible Navier-Stokes Equations Using Non-Staggered Grid (정규격자를 사용한 비압축성 Navier-Stokes 방정식의 수치해석을 위한 압력 Poisson 방정식의 이산화)

  • Kim Y. G.;Kim H. T.;Kim J. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.96-101
    • /
    • 1998
  • Various discretiation methods of Laplacian operator in the Pressure-Poisson equation are investigated for the solution of incompressible Navier-Stokes equations using the non-staggered grid. Laplacian operators previously proposed by other researchers are applied to a Driven-Cavity problem. The computational results are compared with those of Ghia. The results show the characteristics of the discrete Laplacian operators.

  • PDF

A BOUNDARY CONTROL PROBLEM FOR THE TIME-DEPENDENT 2D NAVIER-STOKES EQUATIONS

  • Kim, Hongchul;Kim, Seon-Gyu
    • Korean Journal of Mathematics
    • /
    • v.16 no.1
    • /
    • pp.57-84
    • /
    • 2008
  • In this paper, a boundary control problem for a flow governed by the time-dependent two dimensional Navier-Stokes equations is considered. We derive a mathematical formulation and a relevant process for an appropriate control along the part of the boundary to minimize the drag due to the flow. After showing the existence of an optimal solution, the first order optimality conditions are derived. The strict differentiability of the state solution in regard to the control parameter shall be exposed rigorously, and the necessary conditions along with the system for the optimal solution shall be deduced in conjunction with the evaluation of the first order Gateaux derivative to the performance functional.

  • PDF

A New Pressure-Based PISO-Finite Element Method for Navier-Stokes Equations in All Speed Range (Navier-Stokes 점성유동의 전속도 영역 해석을 위한 새로운 압력기반 PISO-유한요소법)

  • Shim E. B.;Chang K. S.
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.112-122
    • /
    • 1996
  • A finite element scheme using the concept of PISO method has been developed to solve the Navier-Stokes viscous flows in all speed range. This scheme includes development of new pressure equation that retains both the hyperbolic term related with the density variation and the elliptic term reflecting the incompressibility constraint. The present method is applied to the incompressible two-dimensional driven cavity flow problems(Re=100, 400 and 1,000). For compressible flows, the Carter plate problem(M=3 and Re=1,000) is computed. Finally, we have simulated the shock-boundary layer interaction(M=2 and Re=2.96×10/sup 5/), a more difficult problem, and compared its results with the experiment to demonstrate the shock capturing capability of the present solution algorithm.

  • PDF

A BOUNDARY CONTROL PROBLEM FOR VORTICITY MINIMIZATION IN TIME-DEPENDENT 2D NAVIER-STOKES EQUATIONS

  • KIM, HONGCHUL
    • Korean Journal of Mathematics
    • /
    • v.23 no.2
    • /
    • pp.293-312
    • /
    • 2015
  • We deal with a boundary control problem for the vorticity minimization, in which the ow is governed by the time-dependent two dimensional incompressible Navier-Stokes equations. We derive a mathematical formulation and a process for an appropriate control along the portion of the boundary to minimize the vorticity motion due to the ow in the fluid domain. After showing the existence of an optimal solution, we derive the optimality system for which optimal solutions may be determined. The differentiability of the state solution in regard to the control parameter shall be conjunct with the necessary conditions for the optimal solutions.

Design Optimization of Transonic Airfoils Based on the Navier-Stokes Equation (Navier-Stokes 방정식을 이용한 천음속 익형의 설계최적화 연구)

  • Lee Hyeong Min;Jo Chang Yeol
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.177-185
    • /
    • 1999
  • The airfoil design optimization procedures based on the Navier-Stokes equations were developed, This procedure enables more realistic and practical transonic airfoil designs. The modified Hicks-Henne functions were used to generate the shape of airfoils. Five Hick-Henne functions were used to design upper surface of airfoil only. To enhance the ability of Hick-Henne function to generate various airfoil shape with limited number of functions, the positions of control points were adjusted through optimization procedure. The design procedure was applied to the single-point design for the drag minimization problem with lift and area constraints. The result shows the capability of the procedure to generate much realistic airfoils with very small drag-creep in the low transonic regime. This is mainly due to the viscosity effect of Navier-Stokes flow analysis. However, in the higher transonic range tile drag-creep appears. The multi-point design is shown to be an effective way to avoid the drag-creep and improve off-design performance which is very similar in the Euler design.

  • PDF