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EXISTENCE OF THREE SOLUTIONS FOR A CLASS OF

NAVIER QUASILINEAR ELLIPTIC SYSTEMS INVOLVING

THE (p1, . . . , pn)-BIHARMONIC

Lin Li

Abstract. In this paper, we establish the existence of at least three solu-
tions to a Navier boundary problem involving the (p1, . . . , pn)-biharmonic
systems. We use a variational approach based on a three critical points
theorem due to Ricceri [B. Ricceri, A three critical points theorem revis-
ited, Nonlinear Anal. 70 (2009), 3084–3089].

1. Introduction and main results

In this work, we study the existence of at least three weak solutions for
the nonlinear elliptic equation of (p1, . . . , pn)-biharmonic type under Navier
boundary conditions:
(P1)






























−∆
(

|∆u1|
p1−2∆u1

)

= λFu1
(x, u1, . . . , un) + µGu1

(x, u1, . . . , un) inΩ,

−∆
(

|∆u2|
p2−2∆u2

)

= λFu2
(x, u1, . . . , un) + µGu2

(x, u1, . . . , un) inΩ,

· · ·

−∆
(

|∆un|
pn−2∆un

)

= λFun
(x, u1, . . . , un) + µGun

(x, u1, . . . , un) inΩ,

ui = ∆ui = 0 for 1 ≤ i ≤ n, on∂Ω,

where λ, µ ∈ [0,+∞), Ω ⊂ R
N (N ≥ 1) is a non-empty bounded open set

with a sufficient smooth boundary ∂Ω, pi > max
{

1, N2
}

for 1 ≤ i ≤ n. F ,
G : Ω × R

n 7→ R are functions such that F (·, t1, . . . , tn), G(·, t1, . . . , tn) are
measurable in Ω for all (t1, . . . , tn) ∈ R

n and F (x, ·), G(x, ·) are continuously
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differentiable in R
n for a.e. x ∈ Ω. Moreover, G satisfies the condition

(G) sup
|(t1,...,tn)|≤s

n
∑

i=1

|Gti(x, t1, . . . , tn)| ≤ hs(x)

for all s > 0 and some hs ∈ L1 with G(·, 0, . . . , 0) ∈ L1. Fi denotes the partial
derivative of F with respect to i, 1 ≤ i ≤ n, so does Gi.

In recent years, the three critical points theorem of B. Ricceri has been
widely used to solve differential equations (see [2, 4, 6, 8, 10, 13, 14, 15, 21, 23]
and references therein). Using the three critical points theorem, some authors
have considered the elliptic systems. In [12], Li and Tang get three solutions
for a class of quasilinear systems involving the (p, q)-Laplacian with Dirichlet
boundary condition. Afrouzi and Heidarkhani [1] unify and generalize Li and
Tang’s problem. In [8], El Manouni and Kbiri Alaoui consider (p, q)-Laplacian
systems with Neumann conditions via Ricceri’s three critical points theorem.
Li and Tang [14] consider a (p, q)-biharmonic system under Navier boundary
condition. In [10], Heidarkhani and Tian study a class of gradient systems de-
pending on two parameters, they get three solutions using Ricceri’s three crit-
ical point theorem. Later, Heidarkhani and Tian [11] using the same method
study a class of gradient Kirchhoff-type systems depending on two parame-
ters. Graef, Heidarkhani and Kong [9] get multiplicity results for multi-point
boundary value problems.

There seems to be increasing interest in studying fourth-order boundary
value problems, because the static form change of beam or the sport of rigid
body can be described by a fourth-order equation, and specially a model to
study traveling waves in suspension bridges can be furnished by the fourth-order
equation of nonlinearity, so it is important to Physics. More general nonlinear
fourth-order elliptic boundary value problems have been studied [5, 7, 16, 17].
Particularity, Li and Tang [13] consider the p-harmonic equation with Navier
boundary condition. Using the three critical points theorem of B. Ricceri, they
get at least three solutions. Recently, Li and Tang [14] also use three critical
points theorem to study a class of (p, q)-biharmonic systems. Here, as in [14],
our main tool is Ricceri’s three critical points theorem; see Theorem 2.1 in the
next section. We also recall that, again applying Ricceri’s three critical points
theorem, elliptic systems have been studied in [3, 4, 9, 10, 11]. The aim of the
present paper is to extend the main result of [14] to the general case.

In this paper, precisely we deal with the existence of an open interval
Λ ⊆ [0,+∞) and a positive real number ρ with the following property: for
every λ ∈ Λ and an arbitrary function G : Ω×R

n → R measurable in Ω for all
(t1, . . . , tn) ∈ R

n and C1 in R
n for every x ∈ Ω satisfying (G), there is a δ > 0,

such that, for each µ ∈ [0, δ] the system (P1) admits at least three weak solu-

tions in
(

W 2,p1(Ω) ∩W
1,p1

0 (Ω)
)

× · · · ×
(

W 2,pn(Ω) ∩W
1,pn

0 (Ω)
)

whose norms

are less than ρ. Our main result is Theorem 1.1, which provides intervals for
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the parameters such that if the parameters belong to those intervals, the cor-
responding system has at least three solutions satisfying some boundedness
properties. Our results generalize and unifies the results in [14].

Here in the sequel, X will be denoted the Sobolev spaceW 2,p1(Ω)∩W 1,p1

0 (Ω)
and E will be denoted the Cartesian product of Sobolev spaces W 2,p1(Ω) ∩

W
1,p1

0 (Ω), . . . ,W 2,pn(Ω) ∩W
1,pn

0 (Ω), i.e., E =
(

W 2,p1(Ω) ∩W
1,p1

0 (Ω)
)

× · · · ×
(

W 2,pn(Ω) ∩W
1,pn

0 (Ω)
)

. The space E will be endowed with the norm

‖(u1, . . . , un)‖ = ‖u1‖p1
+· · ·+‖un‖pn

, ‖ui‖pi
=

(
∫

Ω

|∆ui|
pi dx

)
1

pi

, 1 ≤ i ≤ n.

Let

(1) K = max

{

sup
u∈W 2,pi (Ω)∩W

1,pi
0

(Ω)\{0}

supx∈Ω |u(x)|pi

‖u‖pi
pi

}

, 1 ≤ i ≤ n.

Since pi > max
{

1, N
2

}

, W 2,pi(Ω) ∩W
1,pi

0 (Ω) →֒ C0(Ω), 1 ≤ i ≤ n, are com-
pact, and one has K < +∞. As usual, a weak solution of problem (P1) is any
(u1, . . . , un) ∈ E such that

−

n
∑

i=1

∫

Ω

|∆ui|
pi−2∆ui∆ξidx

=

n
∑

i=1

λ

∫

Ω

Fui
(x, u1, . . . , un)ξidx+

n
∑

i=1

µ

∫

Ω

Gui
(x, u1, . . . , un)ξidx

(2)

for every (ξ1, . . . , ξn) ∈ E.
Now, for every x0 ∈ Ω and choice r1, r2 with r2 > r1 > 0, such that

B(x0, r1) ⊂ B(x0, r2) ⊆ Ω, where B(x0, r1) denotes the ball with center at
x0 and radius of r1, put
(3)

θi =



















3N
(r2−r1)(r2+r1)

(

Kπ
N
2 ((r2+r1)

N−(2r1)
N )

2NΓ(1+N
2 )

)
1

pi

, N < 4r1
r2−r1

,

12r1
(r2−r1)2(r2+r1)

(

Kπ
N
2 ((r2+r1)

N−(2r1)
N )

2NΓ(1+N
2 )

)
1

pi

, N ≥ 4r1
r2−r1

,

1 ≤ i ≤ n,

where Γ(·) is the Gamma function. Our main result gives the following theo-
rems.

Theorem 1.1. Suppose that r2 > r1 > 0, such that B(x0, r2) ⊂ Ω and assume

that there exist n + 2 positive constants c, d, si for 1 ≤ i ≤ n with si < pi,
∑n

i=1
(dθi)

pi

pi
> c

∏

n
i=1

pi
, and a negative function α ∈ L1(Ω) such that

(j1) F (x, t1, . . . , tn) ≤ 0 for a.e. x ∈ Ω\B(x0, r1) and all (t1, . . . , tn) ∈
[0, d]× · · · × [0, d];
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(j2) m(Ω)
∑n

i=1
(dθi)

pi

pi
inf(x,t1,...,tn)∈Ω×A F (x, t1, . . . , tn)

> c
∏

n
i=1

pi

∫

B(x0,r1)
F (x, d, . . . , d)dx,

where A =

{

(t1, . . . , tn)

∣

∣

∣

∣

∑n
i=1

|ti|
pi

pi
≤ c

∏

n
i=1

pi

}

;

(j3) F (x, t1, . . . , tn) ≥ α(x)(1 +
∑n

i=1 |ti|
si) for a.e. x ∈ Ω and all ti ∈

R, 1 ≤ i ≤ n.

Then there exist an open interval Λ ⊆ [0,+∞) and a positive real number ρ with

the following property: for each λ ∈ Λ and for every Carathéodory functions

Gti : Ω×R
n 7→ R, satisfying (G), there exists δ > 0 such that, for each µ ∈ [0, δ],

problem (P1) has at least three solutions whose norms in E are less than ρ.

Let f be a continuous function in Ω and gi be a C1 function for 1 ≤ i ≤ n

and

F (x, u1, . . . , un) = f(x)

(

n
∏

i=1

gi(ui)

)

for each (x, u1, . . . , un) ∈ Ω × R
n. More precisely, we consider the following

problem

(P2)



































































−∆
(

|∆u1|
p1−2∆u1

)

= λf(x)g′1(u1)
(

∏n
i=1,i6=1

gi(ui)
)

+µGu1
(x, u1, . . . , un), in Ω,

−∆
(

|∆u2|
p2−2∆u2

)

= λf(x)g′2(u2)
(

∏n
i=1,i6=2

gi(ui)
)

+µGu2
(x, u1, . . . , un), in Ω,

· · ·

−∆
(

|∆un|
pn−2∆un

)

= λf(x)g′n(un)
(

∏n
i=1,i6=n

gi(ui)
)

+µGun
(x, u1, . . . , un), in Ω,

ui = ∆ui = 0 for 1 ≤ i ≤ n, on ∂Ω.

Then, by using Theorem 1.1, we have the following result:

Corollary 1.1. Assume that there exist n + 2 positive constants c, d, and si
for 1 ≤ i ≤ n with

∑n
i=1

(dθi)
pi

pi
> c

∏

n
i=1

pi
, si < pi for 1 ≤ i ≤ n and a negative

function α(x) ∈ L1(Ω) such that

(k1) f(x) ≤ 0 for each x ∈ Ω\B(x0, r1) and gi ≤ 0 for ti ∈ [0, d], 1 ≤ i ≤ n;

(k2) m(Ω)
∑n

i=1
(dσi)

pi

pi
inf(t1,...,tn)∈A f(x)

∏n
i−1 gi(ti)

> c
∏n

i=1
gi(d)
pi

∫

B(x0,r1)
f(x)dx,

where A =

{

(t1, . . . , tn)

∣

∣

∣

∣

∑n
i=1

|ti|
pi

pi
≤ c

∏

n
i=1

pi

}

;

(k3) f(x)
∏n

i=1 gi(ti) ≥ α(x)(1 +
∑n

i=1 |ti|
si) for all ti ∈ R, 1 ≤ i ≤ n and

a.e. x ∈ Ω.

Then there exist an open interval Λ ⊆ [0,+∞) and a positive real number ρ with

the following property: for each λ ∈ Λ and for every Carathéodory functions
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Gti : Ω × R
n 7→ R for 1 ≤ i ≤ n, satisfying (G), there exists δ > 0 such that,

for each µ ∈ [0, δ], problem (P2) has at least three solutions whose norms in E

are less than ρ.

Here is a remarkable consequence of Theorem 1.1. Consider the problem
(P3)






























−∆
(

|∆u1|
p1−2∆u1

)

= λFu1
(u1, . . . , un) + µGu1

(x, u1, . . . , un), inΩ,

−∆
(

|∆u2|
p2−2∆u2

)

= λFu2
(u1, . . . , un) + µGu2

(x, u1, . . . , un), in Ω,

· · ·

−∆
(

|∆un|
pn−2∆un

)

= λFun
(u1, . . . , un) + µGun

(x, u1, . . . , un), in Ω,

ui = ∆ui = 0 for 1 ≤ i ≤ n, on ∂Ω.

Now we state another theorem.

Theorem 1.2. Let F : Rn 7→ R be a C1 function and there exist n+2 positive

constants c, d, si for 1 ≤ i ≤ n and a negative constant a with
∑n

i=1
(dθi)

pi

pi
>

c
∏

n
i=1

pi
, si < pi for 1 ≤ i ≤ n such that

(l1) F (t1, . . . , tn) ≤ 0 for all (t1, . . . , tn) ∈ [0, d]× · · · × [0, d];

(l2) m(Ω)
∑n

i=1
(dσi)

pi

pi
inf(t1,...,tn)∈A F (t1, . . . , tn)

>
crN

1
π

N
2

Γ(1+N
2
)
∏

n
i=1

pi
F (d, . . . , d),

where A =

{

(t1, . . . , tn)

∣

∣

∣

∣

∑n
i=1

|ti|
pi

pi
≤ c

∏

n
i=1

pi

}

;

(l3) F (t1, . . . , tn) ≥ a(1 +
∑n

i=1 |ti|
si) for all ti ∈ R, 1 ≤ i ≤ n.

Then there exist an open interval Λ ⊆ [0,+∞) and a positive real number ρ

with the following property: for each λ ∈ Λ and for some Carathéodory functions

Gti : Ω×R
n 7→ R, satisfying (G), there exists δ > 0 such that, for each µ ∈ [0, δ],

problem (P3) has at least three solutions whose norms in E are less than ρ.

If N = 1, we can get a better result than Theorem 1.2. For simplicity, fixing
Ω =]0, 1[, pi > 1, put

(4) k = max

{

1

2pi
p−1
i , i = 1, . . . , n

}

then we have the following result.

Theorem 1.3. Let F : Rn 7→ R be a C1 function and assume that there exist

n+ 2 positive constants c, d, si and a negative constant a with
∑n

i=1
(32d)pi

2Kpi
>

c
∏

n
i=1

pi
for 1 ≤ i ≤ n, where k is given by (4), such that

(m1) F (t1, . . . , tn) ≤ 0 for all (t1, . . . , tn) ∈ [0, d]× · · · × [0, d];

(m2)
∑n

i=1
(32d)pi

2kpi
inf(t1,...,tn)∈A F (t1, . . . , tn) >

c
2
∏

n
i=1

pi
F (d, . . . , d),

where A =

{

(t1, . . . , tn)

∣

∣

∣

∣

∑n
i=1

|ti|
pi

pi
≤ c

∏

n
i=1

pi

}

;

(m3) F (t1, . . . , tn) ≥ a(1 +
∑n

i=1 |ti|
si) for all ti ∈ R, 1 ≤ i ≤ n.
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Then there exist an open interval Λ ⊆ [0,+∞) and a positive real number ρ with

the following property: for each λ ∈ Λ and for every Carathéodory functions

Gti : Ω×R
n 7→ R, satisfying (G), there exists δ > 0 such that, for each µ ∈ [0, δ],

problem

(P4)






























−
(

|u′′
1 |

p1−2u′′
1

)′′
= λFu1

(u1, . . . , un) + µGu1
(x, u1, . . . , un), in ]0, 1[,

−
(

|u′′
2 |

p2−2u′′
2

)′′
= λFu2

(u1, . . . , un) + µGu2
(x, u1, . . . , un), in ]0, 1[,

· · ·

−
(

|u′′
n|

pn−2u′′
n

)′′
= λFun

(u1, . . . , un) + µGun
(x, u1, . . . , un), in ]0, 1[,

ui(0)− ui(1) = u′′
i (0)− u′′

i (1) = 0 for 1 ≤ i ≤ n,

has at least three solutions whose norms in W 2,p1(0, 1) ∩ W
1,p1

0 (0, 1) × · · · ×

W 2,pn(0, 1) ∩W
1,pn

0 (0, 1) are less than ρ.

2. Proof of theorems

Our analysis is based on the following three critical points theorem to trans-
fer the existence of three solutions of the system (P1) into the existence of
critical points of the Euler functional.

Theorem 2.1 ([19], Theorem 1). Let X be a reflexive real Banach space. Φ: X
7→ R is a continuously Gâteaux differentiable and sequentially weakly lower

semicontinuous functional whose Gâteaux derivative admits a continuous in-

verse on X∗ and Φ is bounded on each bounded subset of X ; Ψ: X 7→ R is

a continuously Gâteaux differentiable functional whose Gâteaux derivative is

compact; I ⊆ R an interval. Assume that

lim
‖x‖→+∞

(Φ(x) + λΨ(x)) = +∞

for all λ ∈ I, and that there exists h ∈ R such that

(5) sup
λ∈I

inf
x∈X

(Φ(x) + λ(Ψ(x) + h)) < inf
x∈X

sup
λ∈I

(Φ(x) + λ(Ψ(x) + h)).

Then, there exists an open interval Λ ⊆ I and a positive real number ρ with the

following property: for every λ ∈ Λ and every C1 functional J : X 7→ R with

compact derivative, there exists δ > 0 such that, for each µ ∈ [0, δ] the equation

Φ′(x) + λΨ′(x) + µJ ′(x) = 0

has at least three solutions in X whose norms are less than ρ.

For using later, we also recall the following result, Proposition 3.1 of [18].

Proposition 2.1 ([18], Proposition 3.1). Let X be a non-empty set and Φ,Ψ
two real functions on X. Assume that there are r > 0 and x0, x1 ∈ X such that

Φ(x0) = Ψ(x0) = 0, Φ(x1) > r, inf
x∈Φ−1(]−∞,r])

Ψ(x) > r
Ψ(x1)

Φ(x1)
.
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Then, for each h satisfying

inf
x∈Φ−1(]−∞,r])

Ψ(x) > h > r
Ψ(x1)

Φ(x1)
,

one has

sup
λ≥0

inf
x∈X

(Φ(x) + λ(h+Ψ(x))) < inf
x∈X

sup
λ≥0

(Φ(x) + λ(h+Ψ(x))).

Before giving the proof of Theorem 1.1, let us see the following two lemmas.

Lemma 2.1. Assume that there exist two positive constants c, d with
∑n

i=1
(dθi)

pi

pi
> c

∏

n
i=1

pi
, such that

(j1) F (x, t1, . . . , tn) ≤ 0 for a.e. x ∈ Ω\B(x0, r1) and all (t1, . . . , tn) ∈
[0, d]× · · · × [0, d];

(j2) m(Ω)
∑n

i=1
(dθi)

pi

pi
inf(x,t1,...,tn)∈Ω×A F (x, t1, . . . , tn)

> c
∏

n
i=1

pi

∫

B(x0,r1)
F (x, d, . . . , d)dx,

where A =

{

(t1, . . . , tn)

∣

∣

∣

∣

∑n
i=1

|ti|
pi

pi
≤ c

∏

n
i=1

pi

}

;

Then there exist u∗
i ∈ W 2,pi(Ω) ∩W

1,pi

0 (Ω) for 1 ≤ i ≤ n, such that

n
∑

i=1

‖u∗
i ‖

pi
pi

pi
>

1
∏n

i=1 pi

c

K

and

m(Ω) inf
(x,t1,...,tn)∈Ω×A

F (x, t1, . . . , tn) >
c

K

∫

Ω F (x, u∗
1(x), . . . , u

∗
n(x))dx

∑n
i=1

∏n
j=1,j 6=i

pj‖u∗
i ‖

pi
pi

,

where A =

{

(t1, . . . , tn)

∣

∣

∣

∣

∑n
i=1

|ti|
pi

pi
≤ c

∏

n
i=1

pi

}

.

Proof. Let
(6)

w(x) =















0, x ∈ Ω\B(x0, r2),
d(3(l4−r4

2
)−4(r1+r2)(l

3−r3
2
)+6r1r2(l

2−r2
2
))

(r2−r1)3(r1+r2)
, x ∈ B(x0, r2)\B(x0, r1),

d, x ∈ B(x0, r1),

where u∗
i (x) = w(x) for 1 ≤ i ≤ n and l = dist(x, x0) =

√

∑N
i=1(xi − x0

i )
2 .

We have

∂u∗
i (x)

∂xi
=

{

0, x∈Ω\B(x0, r2)∪B(x0, r1),
12d(l2(xi−x0

i )−(r1+r2)l(xi−x0

i )+r1r2(xi−x0

i ))
(r2−r1)3(r1+r2)

, x∈B(x0, r2)\B(x0, r1),

∂2u∗
i (x)

∂x2
i

=

{

0, x∈Ω\B(x0, r2)∪B(x0, r1),
12d(r1r2+(2l−r1−r2)(xi−x0

i )
2/l−(r2+r1−l)l)

(r2−r1)3(r1+r2)
, x∈B(x0, r2)\B(x0, r1),
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N
∑

i=1

∂2u∗
i (x)

∂x2
i

=

{

0, x∈Ω\B(x0, r2)∪B(x0, r1),
12d((N+2)l2−(N+1)(r1+r2)l+Nr1r2)

(r2−r1)3(r1+r2)
, x∈B(x0, r2)\B(x0, r1).

It is easy to verify that u∗
i ∈ W 2,pi(Ω) ∩W

1,pi

0 (Ω), and, in particular, one has

(7)

‖u∗
i ‖

pi

pi
=

(12d)pi2π
N
2

(r2 − r1)3pi(r1 + r2)piΓ(N2 )

×

∫ r2

r1

|(N + 2)r2 − (N + 1)(r1 + r2)r +Nr1r2|
pirN−1dr.

Here, we obtain from (3) and (7) that

(8)
θ
pi

i dpi

K
< ‖u∗

i ‖
pi

pi
for 1 ≤ i ≤ n.

By the assumption
n
∑

i=1

(dθi)
pi

pi
>

c
∏n

i=1 pi
,

it follows from (8) that

n
∑

i=1

‖u∗
i ‖

pi
pi

pi
>

1

K

(

n
∑

i=1

dpiθ
pi

i

pi

)

>
1

∏n
i=1 pi

c

K
.

Since 0 ≤ u∗
i ≤ d for each x ∈ Ω, 1 ≤ i ≤ n, the condition (j1) ensures that
∫

Ω\B(x0,r2)

F (x, u∗
1(x), . . . , u

∗
n(x))dx

+

∫

B(x0,r2)\B(x0,r1)

F (x, u∗
1(x), . . . , u

∗
n(x))dx ≤ 0.

Hence, by condition (j2) and (8), we have

m(Ω) inf
(x,t1,...,tn)∈Ω×A

F (x, t1, . . . , tn)

>
c

∏n
i=1 pi

(
∑

n
i=1

dpiθ
pi
i

pi

)

∫

B(x0,r1)

F (x, d, . . . , d)dx

>
c

K
∏n

i=1 pi

1
∑n

i=1

‖u∗
i
‖
pi
pi

pi

∫

B(x0,r1)

F (x, d, . . . , d)dx

≥
c

K

∫

Ω F (x, u∗
1(x), . . . , u

∗
n(x))dx

∑n
i=1

∏n
j=1,j 6=i

pj‖u∗
i ‖

pi
pi

.
�

Lemma 2.2. Let T : E 7→ E∗ be the operator defined by

〈T (u1, . . . , un), (ξ1, . . . , ξn)〉 =

n
∑

i=1

∫

Ω

|∆ui(x)|
pi−2∆ui(x)∆ξi(x)dx
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for all (u1, . . . , un), (ξ1, . . . , ξn) ∈ E, where E∗ denotes the dual of E. Then T

admits a continuous inverse on E∗.

Proof. Taking into account (2.2) of [20] for p ≥ 2, there exists a positive con-
stant cp such that

〈|x|p−2x− |y|p−2y, x− y〉 ≥ cp|x− y|p,

where 〈·, ·〉 denotes the usual inner product in R
N for every x, y ∈ R

N . Thus,
it is easy to see that

(T (u1, . . . , un)− T (v1, . . . , vn))(u1 − v1, . . . , un − vn)

≥ min{cp1
, . . . , cpn

}
n
∑

i=1

‖ui − vi‖
pi

pi

for every (u1, . . . , un), (v1, . . . , vn) ∈ E, which means that T is uniformly mono-
tone. Therefore, since T is coercive and hemicontinuous in X (for more details,
see [14, Lemma 2]), by applying Theorem 26.A of [22], we have that T admits
a continuous inverse on E∗. �

Now we can give the proof of our main results.

Proof of Theorem 1.1. For each (u1, . . . , un) ∈ E, let

Φ(u1, . . . , un) =

n
∑

i=1

‖ui‖
pi
pi

pi
,

Ψ(u1, . . . , un) =

∫

Ω

F (x, u1, . . . , un)dx

and

J(u1, . . . , un) =

∫

Ω

G(x, u1, . . . , un)dx.

Under the condition of Theorem 1.1, Φ is a continuously Gâteaux differen-
tiable and sequentially weakly lower semicontinuous functional. Moreover, from
Lemma 2.2 the Gâteaux derivative of Φ admits a continuous inverse on E∗. Ψ
and J are continuously Gâteaux differential functionals whose Gâteaux deriva-
tives are compact. Obviously, Φ is bounded on each bounded subset of E. In
particular, for each (u1, . . . , un), (ξ1, . . . , ξn) ∈ E,

〈Φ′(u1, . . . , un), (ξ1, . . . , ξn)〉 =
n
∑

i=1

∫

Ω

|∆ui|
pi−2∆ui∆ξidx,

〈Ψ′(u1, . . . , un), (ξ1, . . . , ξn)〉 =

n
∑

i=1

λ

∫

Ω

Fui
(x, u1, . . . , un)ξidx,

〈J ′(u1, . . . , un), (ξ1, . . . , ξn)〉 =

n
∑

i=1

µ

∫

Ω

Gui
(x, u1, . . . , un)ξidx.
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Hence, it follows from (2) that the weak solutions of systems (P1) are exactly
the solutions of the equation

Φ′(u1, . . . , un) + λΨ′(u1, . . . , un) + µJ ′(u1, . . . , un) = 0.

Thanks to (j3), for each λ > 0, one has that

(9) lim
‖(u1,...,un)‖→+∞

(Φ(u1, . . . , un) + λΨ(u1, . . . , un)) = +∞,

and so the first assumption of Theorem 2.1 holds.
Thanks to Lemma 2.1, there exists (u∗

1, . . . , u
∗
n) ∈ E such that

(10) Φ(u∗
1, . . . , u

∗
n) =

n
∑

i=1

‖u∗
i ‖

pi
pi

pi
>

1
∏n

i=1 pi

c

K
> 0 = Φ(0, . . . , 0)

and

(11) m(Ω) inf
(x,t1,...,tn)∈Ω×A

F (x, t1, . . . , tn) >
c

K

∫

Ω
F (x, u∗

1(x), . . . , u
∗
n(x))dx

∑n
i=1

∏n
j=1,j 6=i

pj‖u∗
i ‖

pi
pi

,

where A =

{

(t1, . . . , tn)

∣

∣

∣

∣

∑n
i=1

|ti|
pi

pi
≤ c

∏

n
i=1

pi

}

.

Now, we obtain from (1) that

sup
x∈Ω

|ui(x)|
pi ≤ K‖ui‖

pi
pi

for 1 ≤ i ≤ n,

for each (u1, . . . , un) ∈ E, and then we have

(12) sup
x∈Ω

{

n
∑

i=1

|ui(x)|
pi

pi

}

≤ K

n
∑

i=1

‖ui‖
pi
pi

pi

for each (u1, . . . , un) ∈ E. Let r = 1
∏

n
i=1

pi

c
K , for each (u1, . . . , un) ∈ E such

that

Φ(u1, . . . , un) =
n
∑

i=1

‖ui‖
pi
pi

pi
≤ r,

by (12) one has

(13) sup
x∈Ω

{

n
∑

i=1

|ui(x)|
pi

pi

}

≤
c

∏n
i=1 pi

.

So, it follows from (13) and (11) that

inf
{(u1,...,un)|Φ(u1,...,un)≤r}

(Ψ(u1, . . . , un))

= inf






(u1,...,un)

∣

∣

∣

∣

∑

n
i=1

‖ui‖
pi
pi

pi
≤r







∫

Ω

F (x, u1, . . . , un)dx

≥

∫

Ω

inf
(t1,...,tn)∈A

F (x, t1, . . . , tn)dx
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≥ m(Ω) inf
(x,t1,...,tn)∈Ω×A

F (x, t1, . . . , tn)

>
c

K
∏n

i=1 pi

∫

Ω
F (x, u∗

1(x), . . . , u
∗
n(x))dx

∑n
i=1

‖u∗
i
‖
pi
pi

pi

= r

∫

Ω
F (x, u∗

1(x), . . . , u
∗
n(x))dx

∑n
i=1

‖u∗
i
‖
pi
pi

pi

= r
Ψ(u∗

1, . . . , u
∗
n)

Φ(u∗
1, . . . , u

∗
n)

.

So, one has

(14) inf
{(u1,...,un)|Φ(u1,...,un)≤r}

(Ψ(u1, . . . , un)) > r
Ψ(u∗

1, . . . , u
∗
n)

Φ(u∗
1, . . . , u

∗
n)

.

Fixing h such that

inf
{(u1,...,un)|Φ(u1,...,un)≤r}

(Ψ(u1, . . . , un)) > h > r
Ψ(u∗

1, . . . , u
∗
n)

Φ(u∗
1, . . . , u

∗
n)

,

from (10), (14) and Proposition 1, with (u01 , . . . , u0n) = (0, . . . , 0) and (u11 , . . . ,

u1n) = (u∗
1, . . . , u

∗
n), we obtain

(15) sup
λ≥0

inf
x∈X

(Φ(x) + λ(h+Ψ(x))) < inf
x∈X

sup
λ≥0

(Φ(x) + λ(h+Ψ(x))),

and so the assumption (5) of Theorem 2.1 holds.
Now, all assumptions of Theorem 2.1 are satisfied. Hence, applying Theorem

2.1, and taking into account that the critical points of the functional Φ+λΨ+µJ

are exactly the weak solutions of the system (P1), we have the conclusion. �

Proof of Theorem 1.2. From (l2) and since
∫

B(x0,r1)

F (d, . . . , d)dx = rN1
π

N
2

Γ(1 + N
2 )

F (d, . . . , d),

we have

m(Ω)

n
∑

i=1

(dθi)
pi

pi
inf

(t1,...,tn)∈A
F (t1, . . . , tn) >

c
∏n

i=1 pi

∫

B(x0,r1)

F (d, . . . , d)dx.

So, we have the conclusion by Theorem 1.1. �

Proof of Theorem 1.3. For each (u1, . . . , un) ∈ W 2,p1(0, 1)∩W
1,p1

0 (0, 1)×· · ·×

W 2,pn(0, 1) ∩W
1,pn

0 (0, 1), let

Φ(u1, . . . , un) =

n
∑

i=1

‖ui‖
pi
pi

pi
,

Ψ(u1, . . . , un) =

∫ 1

0

F (u1, . . . , un)dx,
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J(u1, . . . , un) =

∫

Ω

G(x, u1, . . . , un)dx.

Under the condition, Φ is a continuously Gâteaux differentiable and sequen-
tially weakly lower semicontinuous functional. Moreover, from Lemma 2.2 the
Gâteaux derivative of Φ admits a continuous inverse on X∗. Ψ and J are
continuously Gâteaux differential functionals whose Gâteaux derivatives are
compact. Obviously, Φ is bounded on each bounded subset of W 2,p1(0, 1) ∩

W
1,p1

0 (0, 1)× · · · ×W 2,pn(0, 1) ∩W
1,pn

0 (0, 1). Hence, it is well known that the
weak solutions of systems are exactly the solutions of the equation

Φ′(u1, . . . , un) + λΨ′(u1, . . . , un) + µJ ′(u1, . . . , un) = 0.

Thanks to (m3), for each λ > 0, one has that

(16) lim
‖(u1,...,un)‖→+∞

(Φ(u1, . . . , un) + λΨ(u1, . . . , un)) = +∞,

and so the first assumption of Theorem 2.1 holds.
Now, let us consider

r =
1

∏n
i=1 pi

c

K
.

We obtain from (1) that

sup
x∈(0,1)

|ui(x)|
pi ≤ K‖ui‖

pi
pi

for 1 ≤ i ≤ n

for each (u1, . . . , un) ∈ W 2,p1(0, 1)∩W 1,p1

0 (0, 1)×· · ·×W 2,pn(0, 1)∩W 1,pn

0 (0, 1),
and then we have

(17) sup
x∈(0,1)

{

n
∑

i=1

|ui(x)|
pi

pi

}

≤ K

n
∑

i=1

‖ui‖
pi
pi

pi

for each (u1, . . . , un) ∈ W 2,p1(0, 1)∩W 1,p1

0 (0, 1)×· · ·×W 2,pn(0, 1)∩W 1,pn

0 (0, 1).

Hence, for each (u1, . . . , un) ∈ W 2,p1(0, 1) ∩ W
1,p1

0 (0, 1) × · · · × W 2,pn(0, 1) ∩

W
1,pn

0 (0, 1) such that

Φ(u1, . . . , un) =

n
∑

i=1

‖ui‖
pi
pi

pi
≤ r,

by (17) one has

(18) sup
x∈(0,1)

{

n
∑

i=1

|ui(x)|
pi

pi

}

≤
c

∏n
i=1 pi

.

Now if we put u∗
i (x) = w(x), where

(19) w(x) =

{

d− 16d(14 − |x− 1
2 |)

2, x ∈ [0, 1
4 ]∪]

3
4 , 1],

d, x ∈] 14 ,
3
4 ],
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it is easy to verify that (u∗
1, . . . , u

∗
n) ∈ W 2,p1(0, 1)∩W 1,p1

0 (0, 1)×· · ·×W 2,pn(0, 1)

∩W 1,pn

0 (0, 1) and get

(20) ‖u∗
i ‖

pi

pi
=

(32d)pi

2
.

Now, under the assumption of
∑n

i=1
(32d)pi

2Kpi
> c

∏

n
i=1

pi
, we have

(21) Φ(u∗
1, . . . , u

∗
n) =

n
∑

i=1

‖u∗
i ‖

pi
pi

pi
>

1
∏n

i=1 pi

c

K
> 0 = Φ(0, . . . , 0).

Moreover, 0 ≤ u∗
i ≤ d, it follows from (m1), (m2) and (20) that

(22)

inf
(t1,...,tn)∈A

F (t1, . . . , tn) >
c

2
∏n

i=1 pi

(

∑n
i=1

(32d)pi

2Kpi

)F (d, . . . , d)

>
c

K
∏n

i=1 pi

1
∑n

i=1

‖u∗
i
‖
pi
pi

pi

∫ 1

0

F (u∗
1(x), . . . , u

∗
n(x))dx

≤
c

K

∫ 1

0 F (u∗
1(x), . . . , u

∗
n(x))dx

∑n
i=1

∏n
j=1,j 6=i

pj‖u∗
i ‖

pi
pi

,

where A =

{

(t1, . . . , tn)

∣

∣

∣

∣

∑n
i=1

|ti|
pi

pi
≤ c

∏

n
i=1

pi

}

.

So, it follows from (18) and (22) that

(23)

inf
{(u1,...,un)|Φ(u1,...,un)≤r}

(Ψ(u1, . . . , un))

= inf






(u1,...,un)

∣

∣

∣

∣

∑

n
i=1

‖ui‖
pi
pi

pi
≤r







∫ 1

0

F (u1, . . . , un)dx

≥

∫ 1

0

inf
(t1,...,tn)∈A

F (t1, . . . , tn)dx

≥ inf
(t1,...,tn)∈A

F (t1, . . . , tn)

>
c

K
∏n

i=1 pi

∫ 1

0 F (u∗
1(x), . . . , u

∗
n(x))dx

∑n
i=1

‖u∗
i
‖
pi
pi

pi

= r

∫ 1

0
F (u∗

1(x), . . . , u
∗
n(x))dx

∑n
i=1

‖u∗
i
‖
pi
pi

pi

= r
Ψ(u∗

1, . . . , u
∗
n)

Φ(u∗
1, . . . , u

∗
n)

.
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Fixing h such that

inf
{(u1,...,un)|Φ(u1,...,un)≤r}

(Ψ(u1, . . . , un)) > h > r
Ψ(u∗

1, . . . , u
∗
n)

Φ(u∗
1, . . . , u

∗
n)

,

from (21), (23) and Proposition 1, with (u01 , . . . , u0n) = (0, . . . , 0) and (u11 , . . . ,

u1n) = (u∗
1, . . . , u

∗
n), we obtain

(24) sup
λ≥0

inf
x∈X

(Φ(x) + λ(h+Ψ(x))) < inf
x∈X

sup
λ≥0

(Φ(x) + λ(h+Ψ(x))),

and so the assumption (5) of Theorem 2.1 holds.
Now, all assumptions of Theorem 2.1 are satisfied. Hence, applying Theorem

2.1, we have the conclusion. �
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