• Title/Summary/Keyword: Natural flow

Search Result 2,452, Processing Time 0.1 seconds

Evaluation of Critical Flow Function by Using Helmholtz Free Energy for Natural Gas Flow Measurement (천연가스 유량 측정에서 헬름홀츠 자유에너지를 이용한 임계유동함수 계산)

  • Ha, Young-Cheol;Her, Jae-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.12
    • /
    • pp.1167-1173
    • /
    • 2013
  • This study aimed to calculate the CFFs (critical flow functions) of a sonic nozzle bank with a 12-nozzle package within 1 s. Toward this end, the Helmholtz free energy of natural gas was formulated by using the AGA8-dc equation of state in a form without integral terms, and thereafter, thermodynamic properties such as the enthalpy, entropy, speed of sound, and heat capacity, which are used in CFF calculation, were derived in analytical form. As a result, the calculation time of CFFs was improved from 6.7 s in a previous study to 0.6 s per 12-nozzle package and kept almost constant regardless of the number of components in natural gas. Furthermore, it was confirmed that the calculated CFF values were in agreement with the results of a CFF international comparison test carried out under ISO management in 1998-1999.

Natural Gas Combustion Analysis in Power Generation Gas Turbine (발전용 가스터빈 연소기의 천연가스 연소유동 해석)

  • Kim, Tae-Ho;Choi, Jeong-Yeol
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.156-161
    • /
    • 2005
  • Two and Three dimensional numerical simulations have been carried out to understand the combustion characteristics of LNG-fueled gas turbine combustor for power generation. Focus of the study was given to the influences of different fuel composition of imported and domestic natural gases with the flow conditions selected from the gas turbine operation data. Reacting flow characteristics of the swirl stabilized natural gas combustor were understood from the comparison of the two-dimensional and three-dimensional results. The thermal influences of different natural gases were very small and the fuel composition and flow rate were considered to be tuned well.

  • PDF

Vision-Based Indoor Localization Using Artificial Landmarks and Natural Features on the Ceiling with Optical Flow and a Kalman Filter

  • Rusdinar, Angga;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.133-139
    • /
    • 2013
  • This paper proposes a vision-based indoor localization method for autonomous vehicles. A single upward-facing digital camera was mounted on an autonomous vehicle and used as a vision sensor to identify artificial landmarks and any natural corner features. An interest point detector was used to find the natural features. Using an optical flow detection algorithm, information related to the direction and vehicle translation was defined. This information was used to track the vehicle movements. Random noise related to uneven light disrupted the calculation of the vehicle translation. Thus, to estimate the vehicle translation, a Kalman filter was used to calculate the vehicle position. These algorithms were tested on a vehicle in a real environment. The image processing method could recognize the landmarks precisely, while the Kalman filter algorithm could estimate the vehicle's position accurately. The experimental results confirmed that the proposed approaches can be implemented in practical situations.

Comparative study of CFD and 3D thermal-hydraulic system codes in predicting natural convection and thermal stratification phenomena in an experimental facility

  • Audrius Grazevicius;Anis Bousbia-Salah
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1555-1562
    • /
    • 2023
  • Natural circulation phenomena have been nowadays largely revisited aiming to investigate the performances of passive safety systems in carrying-out heat removal under accidental conditions. For this purpose, assessment studies using CFD (Computational Fluid Dynamics) and also 3D thermal-hydraulic system codes are considered at different levels of the design and safety demonstration issues. However, these tools have not being extensively validated for specific natural circulation flow regimes involving flow mixing, temperature stratification, flow recirculation and instabilities. In the present study, an experimental test case based on a small-scale pool test rig experiment performed by Korea Atomic Energy Research Institute, is considered for code-to-code and code-to-experimental data comparison. The test simulation is carried out using the FLUENT and the 3D thermal-hydraulic system CATHARE-2 codes. The objective is to evaluate and compare their prediction capabilities with respect to the test conditions of the experiment. It was observed that, notwithstanding their numerical and modelling differences, similar agreement results are obtained. Nevertheless, additional investigations efforts are still needed for a better representation of the considered phenomena.

Effects of Stabilizing Thermal Gradients on the Natural Convection in Rectangular Enclosures due to Lateral Temperature Difference (양단온도차에 의한 직각용기내 자연대류에 미치는 안정온도구배의 영향)

  • Kim, Moo Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.5
    • /
    • pp.365-375
    • /
    • 1991
  • Confined natural convection due to lateral temperature difference in rectangular enclosures was studied numerically and experimentally for the insulated and the constant temperature enclosures. In the case of insulated enclosure, the flow pattern and heat transfer modes are rather simple depending mainly upon Rayleigh number. In the case of isothermal enclosure, however, the phenomena of flow and heat transfer are somewhat complex and interesting due to the stable thermal gradients and various circumstances resulted from four wall temperature conditions. As a dimensionless variable, to describe properly the flow and heat transfer phenomena in the isothermal enclosure, temperature difference ratio ${\Delta}T_v/{\Delta}T_H$ is newly introduced and this parameter seems to be appropriate in the analysis of results on the effect of stabilizing thermal gradient.

  • PDF

Low Flow Pollutant Transport in Natural Rivers (갈수기(渴水期) 하천(河川)에서의 오염물질(汚染物質)의 확산(擴散) 및 이동(移動))

  • Seo, Il Won
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.7 no.1
    • /
    • pp.29-36
    • /
    • 1993
  • The complex nature of low flow mixing in natural channels has been investigated using both laboratory experiments and the numerical solution of a proposed mathematical model that is based on a set of mass balance equations describing the mixing and mass exchange mechanisms. Laboratory experiments, which involved collection of channel geometry, hydraulic, and dye dispersion test data, were conducted in a model of four pool and riffle sequences in a 49-m long tilting flume. The experimental results show that flow over the model pool-riffle sequences is highly non-uniform. Concentration-time curves are significantly skewed with long tails. Comparison between measured and predicted concentration-time curves shows good agreement in the general shape, peak concentration and time to peak. The proposed model shows significant improvement over the conventional one-dimensional dispersion model in predicting natural mixing processes in open channels under low flow conditions through pools and riffles.

  • PDF

TRIPLE SOLUTIONS IN NATURAL CONVECTION OF A FLUID IN A HORIZONTAL ANNULUS WITH CONSTANT TEMPERATURE WALLS (일정 온도 벽면을 갖는 수평 환형공간 내의 유체의 자연 대류에서의 삼중해)

  • Yoo, Joo-Sik
    • Journal of computational fluids engineering
    • /
    • v.22 no.1
    • /
    • pp.110-115
    • /
    • 2017
  • Natural convection of a fluid with the Prandtl number of 7(water) in a horizontal annulus with constant temperature walls is numerically investigated. The inner cylinder is hotter than the outer cylinder. The flows are classified by the number of eddies in a half annulus. It is found that dual or triple solutions exists above a critical Rayleigh number for an annulus with a aspect ratio $D_i/L=4$. Transitions of $3{\rightarrow}1$ and $2{\rightarrow}1$ eddy flow occur with decrease of Rayleigh number. However, reverse transitions of $1{\rightarrow}3$ and $1{\rightarrow}2$ eddy flow do not occur with increase of Rayleigh number, and no hysteresis phenomenon is observed. In the regime of triple solutions, the 3 eddy flow has the largest mean Nusselt number value and the 1 eddy flow has the smallest value.

A Numerical Study on the Two-Phase Natural Circulation Flow in Reactor Cavity under External Vessel Cooling (원자로 외벽냉각시 원자로공동에서의 자연순환 이상유동에 대한 수치적 연구)

  • Kim, Hong-Min;Seo, Jun-Woo;Kim, Kwang-Yong;Park, Rae-Joon;Ha, Kwang-Soon;Kim, Sang-Baik
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.781-785
    • /
    • 2003
  • This work presents a numerical analysis of two-phase natural circulation flow in reactor cavity under external vessel cooling. Steady, incompressible, three-dimensional Reynolds-averaged Navier-Stokes equations for multiphase flows with zero equation turbulence model are solved to predict the shear key effect on the circulation rate of cooling water and the distribution of void fraction according to the different mass flow of inlet air. Results show that shear key has a positive effect on the circulation rate of cooling water and induce a local increase of void fraction below the shear key, but not remarkably.

  • PDF

The Simulation of Semicale Natural Circulation Test 5-NC-3,S-NC-4 Using RELAP5/Mod3.1

  • Kim, S. N.;W. H. Jang
    • Nuclear Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.424-434
    • /
    • 1998
  • RELAP5/Mod3.1 code was assessed with the semiscale experiment S-NC-3, and S-NC-4, which simulated the two-phase natural circulation and reflux condensation for the SBLOCA of PWR, respectively . Test S-NC-3 and S-NC-4 calculation results showed that RELAP5/Mod3.1 quite well describes the influence of steam generator secondary side heat transfer degradation on both two-phase natural circulation and reflux condensation. A comparison between the calculated and measured two-phase mass flow rate in test S-NC-3 shows good agreement for primary mass inventory more than 92%. And RELAP5/Mod3.1 have a good mass flow rate prediction capability for the transient such as S-NC-4 except some flow oscillations. The reflux flow rate for S-NC-4 test is under predicted, and the overall results verify that the correct prediction of the reduced liquid level appears to be required for the correct calculation of the overall phenomena.

  • PDF

Experimental Study on Rayleigh-Benard-Marangoni Natural Convection using IR Camera (열화상카메라를 이용한 Rayleigh-Benard-Marangoni 자연대류 실험 연구)

  • Kim, Jeongbae
    • Journal of ILASS-Korea
    • /
    • v.26 no.2
    • /
    • pp.67-72
    • /
    • 2021
  • Rayleigh-Benard-Marangoni (RBM) convection have been artificially made for application of various engineering fields. For a relatively larger circular container, natural convection experiments were carried out to reveal and show the flow characteristics with engine oil (SAE30) using IR camera. IR camera has captured the temperature distribution on the free surface. From these experiments, it was confirmed that it was possible to quantitatively analyze the occurrence characteristics of RBM flow clearly from the thermal images taken with IR camera. As the aspect ratio increased, both the number of internal and external cavities increased. And found that the criteria of RBM flow generation proposed through previous experiments performed for small-sized containers are also very effective with the results on larger circular container.