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Abstract

This paper proposes a vision-based indoor localization method for autonomous vehicles. A
single upward-facing digital camera was mounted on an autonomous vehicle and used as
a vision sensor to identify artificial landmarks and any natural corner features. An interest
point detector was used to find the natural features. Using an optical flow detection algorithm,
information related to the direction and vehicle translation was defined. This information was
used to track the vehicle movements. Random noise related to uneven light disrupted the
calculation of the vehicle translation. Thus, to estimate the vehicle translation, a Kalman filter
was used to calculate the vehicle position. These algorithms were tested on a vehicle in a real
environment. The image processing method could recognize the landmarks precisely, while
the Kalman filter algorithm could estimate the vehicle’s position accurately. The experimental
results confirmed that the proposed approaches can be implemented in practical situations.
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1. Introduction

Landmarks are essential for autonomous vehicle localization and navigation. Landmarks are
used as references when a robot localizes or navigates within its environment. Many different
types of landmark are used by autonomous vehicles or robots to locate their position. The po-
sitions of landmarks can be divided into vertical and horizontal views. The advantage of using
ceiling landmarks or vertical views is the tolerance of dynamic obstacles and rearrangements,
so many researchers have used ceiling landmarks as references for robot navigation [1-7].

Vision is a good option for robot sensors because it is sufficiently flexible for detecting
or recognizing any feature with any color and any size. A vision system or a combination
of a vision system with sensors has been used in many localization and navigation systems
[1, 5, 8-12]. Lee et al. [8] used a combination of vision and a range sensor for mobile robot
localization. Park et al. [11] used a charge-coupled device (CCD) camera to calculate the zero
moment point, which was measured from the reference object image (the camera was located
on the robot’s head).

Ceiling lamps in an office were used as a landmark by Panzieri et al. [5] because they are
the same shape and are spaced in a regular pattern, while they can be observed easily without
any obstacles blocking the robot vision system. However, ceiling light-based positioning
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methods assume that all of the lights are lit and there are prob-
lems when a light is damaged or off. In addition, a light might
not appear in the camera view. Xu et al. [6] used natural fea-
tures on ceilings to estimate the initial orientation and position
of an autonomous vehicle in the word frame of a specific block
on the ceiling using a perspective n-point-based positioning
method. The global orientation was estimated based on a point
feature on the ceiling. Wu and Tsai [7] attached a circular ar-
tificial landmark to the ceiling because the circular shape on
the ceiling became an irregular ellipse when viewed from be-
low, and the parameters of the ellipse were used to estimate the
vehicle location with good precision during navigation.

The Kalman filter (KF) and extended Kalman filter (EKF)
have been used in many areas such as automotive engineering,
communications, and simultaneous localization and mapping
(SLAM) [1, 2, 11-16]. Myung et al. [13] used a KF to estimate
the parameters given physical constraints using a general con-
strained optimization technique. Kim and Hong [14] used an
EKF and an unscented KF for vehicle tracking in an automated
container terminal. Rusdinar et al. [1] (our previous research)
used EKF to estimate the vehicle position using artificial land-
marks and odometry sensors. The EKF was used when the
artificial landmark was not detectable by the vehicle. The EKF
was also used in robot formation control to estimate the virtual
target point position [15, 16].

In this paper, we propose a ceiling localization method based
on a combination of artificial and natural landmarks with a KF.
Previously, we used artificial landmark to localize a mobile
robot and odometry sensors to track the vehicle displacement
between one landmark and another landmark. To improve our
previous method, we propose natural feature recognition and
use it to track vehicle movements. Corner detection algorithms
have been used to detect natural features on ceilings. Thus, we
used a corner detection algorithm and removed the odometry
sensor.

The contributions of this study are as follows: 1) optical flow
algorithms replaced the encoder and gyro sensor; 2) a robust
and fast image processing algorithm was developed, which
can detect and recognize landmarks in real-time in areas with
uneven light; 3) natural landmarks were used when the artificial
landmarks could not be detected. We consider that our proposed
system will help engineers to develop simple and cheap systems
without reducing the capacity for autonomous vehicle guidance
during localization and navigation in an indoor environment.

The paper is structured as follows. In Section 2, we describe
the system configuration and image processing. In Section 3,

 

  

Figure 1. Mobile robot with an upward-facing camera and the land-
mark on the ceiling.

we present the localization method based on optical flow and
the KF. In Section 4, our experimental results are described. In
Section 5, we present our conclusions.

2. System Configuration and Image Processing

Figure 1 shows the autonomous vehicle with an upward-facing
digital camera, which was used in the experiments, and the
landmark on the ceiling. A Compaq Presario CQ20 (Hewlett-
Packard, Palo Alto, CA, USA) notebook running a C++ pro-
gram was used to handle the image processing routines and to
control the vehicle movements. Two direct current motors were
used to propel the vehicle. The motors were controlled by the
notebook via a USB DAQ (National Instrument, Austin, TX,
USA) motor driver.

During image processing, the object recognition algorithm
used corner features on the ceiling as landmarks. The corner
features were used as references to track the vehicle’s displace-
ment. Harris corner detection was used to recognize the corner
features of the ceiling. Optical flow was used to calculate the
displacement distance.

2.1 Corner Feature Detection and Optical Flow

The point of a corner is defined by

R(x0, y0) = detM − k(traceM )2, (1)

where M is a 2 × 2 structure matrix and k is a scale constant
with a range of 0.004 < k < 0.006. The determinant M and
trace M are defined by the eigenvalue (λ) of matrix M, where
det M = λ1λ2 and traceM = λ1 + λ2. The structure matrix
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Figure 2. Vehicle movements and the upward-facing camera position.
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Figure 3. Calculation of the angular velocity.

M is defined by

M (x0, y0) =
∑

x,y∈neighborhood(x0,y0)

w(x, y)

[
I2x IxIy

IxIy I2y

]
,

(2)
where w(x,y) is a weight function and I is the image intensity.
The camera movement can be determined using

E(u, v) =
∑

w(x, y) [I2 − I1] , (3)

where E is the difference between the original and the moved
window. I1 and I2 are the intensity of the image position (x,
y) and the intensity of the moved window, respectively. I2 is
defined by

I2 = I(x+ u, y + v), (4)

where u and v are the window displacements in the x and y
directions, respectively.

2.2 Calculation of the Angular Velocity

The camera position is located exactly in the middle of the
axle, so the vehicle movements are defined by two modes:
straight and rotate. These movement modes simplify the angular
velocity calculations. Figure 2 shows the robot movement
modes and the camera position.

  

   

Figure 4. Image processing to calculate the optical flow.

To calculate the angular velocity of the mobile robot based
on the image processing results, the image is divided into three
Region of Interests(ROIs), i.e., the left, front, and right ROIs.
Each ROI has an angular velocityω. Figures 3 and 4 show
the angular velocity calculations relative to the image feature
translation. The angular velocity in each ROI is defined by

ωi = V⊥/R, (5)

where R is the distance between the center of the image and the
center of the ROI and V⊥ is the cross-radial component or a

component perpendicular to the radius R. R and V⊥ are
defined by

Ri =
√

(yr − y0)2 + (xr − x0)2, (6)

V⊥ = Vi cos(ϕ), (7)

where (xr, yr) is center of the ROI position in the image frame,
(x0, y0) is the center of the image, and Vi and ϕ are the speed of
translation from point t-1 to t and the angle between Vi and the
cross-radial component, respectively. The angle ϕis defined by

ϕ = β + 90− θ, (8)

where β is defined by

β = tan−1

(
|x0 − xr|
|y0 − yr|

)
+ 90. (9)

The translation of the center point is used to calculate the
translation distance. The translation distance in the image is
defined by

l =
√

(xc − xu)2 + (yc − yu)2, (10)

where (xc, yc) is the center of the image defined by

image width/2 and image height/2,

while (xu, yu) is defined by (3). All of the calculations are
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performed in a pixel format. The artificial landmark from our
previous study [1] is used to convert pixels to a metric format.
The artificial landmark comprises circles arranged in a defined
pattern. The pattern generates landmarks and directional in-
formation. A comparison of the real diameter of the circles
and their diameter in the image is used to calculate the metric
format during image processing.

3. Vehicle Localization and Navigation

3.1 Vehicle Movements

The proposed motion model is defined by

Xt =

 xpt
ypt
θt

 =

 xpt−1 + s cos(θt−1 + ωt)

ypt−1 + s sin(θt−1 + ωt)

θt−1 + ωt

 , (11)

where xpt ,ypt , andθtare the (x, y) vehicle position and the heading
at each step, respectively; p indicates that x, y, and θ are derived
from the optical flow algorithm; θt−1 is the robot heading at
step t-1; ωt is the angular velocity calculated based on the
optical flow during image processing; and s is the translation
distance between one point and another point according to the
optical flow algorithm. The translation distance is defined by

s = l + vptb, (12)

where l is defined by (11) and vpis the vehicle speed, which is
determined based on the speed of translation from one point to
another point in the image. The vehicle speed is defined by

vp = l/ts, (13)

where ts is the time sampling rate during image processing,
which is calculated when the algorithm detects the original
corners based on the translated corners, and tb is the looping
time for image processing, which is calculated after the end of
ts to the first ts. A time function in C++ is used to calculate the
time sampling rate.

3.2 Implementation of the Kalman Filter

During image processing, the noises change the vehicle trans-
lation and direction, which makes the vehicle position distant
from the real position. The KF is a tool that can estimate the
variables used for the localization calculations during image
processing. In this study, a KF was used to estimate the vehicle

position based on its input (translation and direction). The KF
state is modeled by

X̄t = AX t−1 + But, (14)

and the measurements are taken from the robot translation cal-
culation produced by the optical flow, where x, y, and θ can be
measured directly:

zt = h(Xt, vt), (15)

where Xt and Xt−1are state vectors at time t and t-1, respec-
tively.

In the simulation, the state is defined as

Xt =
[
xpt−1, ypt−1, θt−1

]T
. (16)

A is an n × n matrix that describes the state at time t-1, which
is defined by

A =
∂f

∂xt−1
=

 1 0 −s sin(ωt + θt)

0 1 s cos(ωt + θt)

0 0 1

 . (17)

B is the n×m matrix that describes the control input u, which is
defined by

B =
∂f

∂ut
=

 cos(ωt + θt−1) −s sin(ωt + θt−1)

sin(ωt + θt−1) s cos(ωt + θt−1)

0 1

 ,
(18)

and zt is a measurement state.

The KF process comprises two stages: the prediction state
and the measurement update state. The prediction state is given
by

P̄t = AP tA
T + Ex, (19)

where Pt and P̄t are a priori and a posteriori estimates of the
error covariance, respectively, and Ex is the process with noise
respect to Xt.

The measurement update state is given by

Kt = P̄tH
T (H P̄tH

T + Ez)
−1, (20)

Xt = X̄t + Kt(zt −HX t), (21)

Pt = (I −K tH )P̄t , (22)

where K is the Kalman gain, Ez is a measurement noise matrix
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Figure 5. Map of the experimental environment (laboratory to hall).

with respect to vt, and I is an identity matrix. The KF reduces
the noise of the target point position. H is a Jacobian matrix
that contains the partial derivatives of the measurement function
h(x) with respect to the state Xt, where

H =
∂h(x)

∂X
=


∂hx
∂x

∂hx
∂y

∂hx
∂θ

∂hy
∂x

∂hy
∂y

∂hy
∂θ

∂hθ
∂x

∂hθ
∂y

∂hθ
∂θ

 =

 1 0 0

0 1 0

0 0 1

 .
(23)

4. Experimental Results

We tested the proposed algorithm in experiments using our
mobile robot. The mobile robot was moved and the upward-
facing camera captured images of the ceiling while tracking
the robot movements. The experiment was divided into two
areas. In the first experiment, the vehicle was moved from the
study room through the meeting room of our laboratory into the
hall of the third floor of our building. Figure 5 shows a map
of our laboratory condition and tracks showing the vehicles
movements. The vehicle moved straight from the start point
in the study room, turned right after moving 350 cm, turned
left after 570 cm, and stopped outside the laboratory or in the
hall. The robot trajectory was plotted using the optical flow
and the artificial landmark. Figure 6 shows the results of the
vehicle movements and the position estimated using only the
optical flow. The trajectory of the vehicle calculated used the
optical flow alone shows that the difference between the vehicle
positions was far from the real position of the vehicle. This was
attributable to noise during image processing.
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Figure 6. Vehicle trajectory based on optical flow alone.
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Figure 7. Vehicle trajectory using optical flow, artificial landmarks,
and the Kalman filter.

Figure 7 shows the vehicle trajectory calculated using the
artificial landmark and the KF. The KF could be used to esti-
mate the vehicle position. The figure compares the localization
results using optical flow alone with that using the KF and an
artificial landmark. The noise that interfered with the position
calculation was eliminated by the KF, so the vehicle orienta-
tion error was corrected when the vehicle detected the artificial
landmark.

In the second experiment, the vehicle moved in the corridor
of our building. Figure 8 shows a map of the experimental
environment in the hall. This environment was similar to that
where we tested the encoder and gyro in our previous studies [7,
8]. The figure shows that there were still errors in the tracking
algorithm. These errors were due to light malfunctions along the
corridor. These errors caused the vehicle’s position to deviate
far from the original trajectory, which could be reduced by the
KF. Figure 9 shows the trajectory of the vehicle without the
KF and artificial landmarks. This shows that the errors were
very different from the real trajectory because there was no
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Figure 8. Map of the experimental environment (hall).
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Figure 9. Experimental results in the hall using optical flow alone.
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Figure 10. Experimental results in the hall using artificial landmarks,
optical flow, and the Kalman filter.

correction process when the vehicle moved along the corridor.
Figure 10 shows the trajectory of the vehicle using the KF and
artificial landmarks, where the KF corrected the positional error
caused by noise.

5. Conclusion

In this study, we developed a vehicle tracking method based on
an optical flow algorithm using natural features on the ceiling
for real-time image processing. The results confirmed that our
tracking algorithms can replace odometry sensors. Using a
combination of artificial landmarks and natural features on the
ceiling, the vehicle could localize and navigate autonomously
with a single low cost digital camera. The natural landmarks
could be recognized by an artificial neural network based on
the shape and color of the image.
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