• Title/Summary/Keyword: Natural Vibration Frequency

검색결과 2,151건 처리시간 0.028초

회전 외팔평판의 면외 방향 굽힘진동 해석 (Flapwise Bending Vibration Analysis of Rotating Cantilever Plates)

  • 김성균;유홍희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.613-618
    • /
    • 2000
  • It is well known that the rotating motion of a blade-like structure induces centrifugal inertia force that causes the variation of the natural frequencies of the structure. Even though most of blade-like structures can be successfully Idealized as beams, some behave like plates rather than beams. This paper presents a modeling method for the flapwise bending vibration analysis of rotating cantilever plates. The dependence of natural frequencies and free vibration modes on the angular speed as well as the aspect ratio of a rotating plate is investigated. Particularly. the natural frequency loci crossing is observed and discussed In the present study.

  • PDF

병진 가속도 운동을 하는 외팔평판의 진동해석 (Vibration Analysis of Cantilever Plates Undergoing Translationally Accelerated Motion)

  • 김성균;유홍희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.349-354
    • /
    • 2001
  • A structure which is accelerated in the chordwise direction induces variation of the bending stiffness due to inertia force. Thus, the characteristic of natural vibration is also changed. This paper presents a modeling method for the vibration analysis of translationally accelerated cantilever plates. The dependence of natural frequencies and modes on the acceleration changes of the plate is investigated. Particularly, a natural frequency loci veering is observed and discussed in the present study.

  • PDF

유체유동 외팔 파이프의 고유진동수에 미치는 이동질량들의 영향 (The Influence of Moving Masses on Natural Frequency of Cantilever Pipe Conveying Fluid)

  • 윤한익;손인수;진종태;김현수
    • 한국소음진동공학회논문집
    • /
    • 제12권11호
    • /
    • pp.840-846
    • /
    • 2002
  • The vibrational system of this study is consisted of a cantilever pipe conveying fluid, the moving masses upon it and an attached tip mass. The equation of motion is derived by using Lagrange equation. The influences of the velocity and the number of moving masses and the velocities of fluid flow in the pipe have been studied on the natural frequency of a cantilever pipe by numerical method. As the size and number of a moving mass increases, the natural frequency of cantilever pipe conveying fluid is decreased. When the first a moving mass Is located at the end of cantilever pipe, the increasing of the distance of moving masses make the natural frequency increase at first and third mode, but the frequency of second mode is decreased. The variation of natural frequency of the system is decreased due to increase of the number of a moving mass. The number and distance of moving masses effect more on the frequency of higher mode of vibration.

Vibration characteristic analysis of high-speed railway simply supported beam bridge-track structure system

  • Jiang, Lizhong;Feng, Yulin;Zhou, Wangbao;He, Binbin
    • Steel and Composite Structures
    • /
    • 제31권6호
    • /
    • pp.591-600
    • /
    • 2019
  • Based on the energy-variational principle, a coupling vibration analysis model of high-speed railway simply supported beam bridge-track structure system (HSRBTS) was established by considering the effect of shear deformation. The vibration differential equation and natural boundary conditions of HSRBTS were derived by considering the interlayer slip effect. Then, an analytic calculation method for the natural vibration frequency of this system was obtained. By taking two simply supported beam bridges of high-speed railway of 24 m and 32 m in span as examples, ANSYS and MIDAS finite-element numerical calculation methods were compared with the analytic method established in this paper. The calculation results show that two of them agree well with each other, validating the analytic method reported in this paper. The analytic method established in this study was used to evaluate the natural vibration characteristics of HSRBTS under different interlayer stiffness and length of rails at different subgrade sections. The results show that the vertical interlayer compressive stiffness had a great influence on the high-order natural vibration frequency of HSRBTS, and the effect of longitudinal interlayer slip stiffness on the natural vibration frequency of HSRBTS could be ignored. Under different vertical interlayer stiffness conditions, the subgrade section of HSRBTS has a critical rail length, and the critical length of rail at subgrade section decreases with the increase in vertical interlayer compressive stiffness.

축류송풍기 부착형 공냉식 열교환기의 진동 저감 (Vibration Reduction of an Air Cooled Heat Exchanger with Axial Flow Fan)

  • 정구충;최연선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.75-81
    • /
    • 2000
  • Vibration problems induced by an air cooled heat exchanger with axial flow fan were investigated during the operation of a petrochemical plant. Two different studies were done; one was experimental field test and the other was theoretical verification. To find main cause of the blade passing frequency of the fan after installing additional blockage board at the air inlet of the axial fan, the frequency spectrum was measured. The vibrations of the blade passing frequency became higher. The natural frequency of driving support of the heat exchanger was theoretically calculated. It was approximately equal to the blade passing frequency. During the normal operation of the plant, it was impossible to modify the structure of the driving support. Instead, the blade number was increased to reduce vibration level. It increased the ratio of the forcing frequency to the natural frequency of the driving support over the resonance region.

  • PDF

순환 유동층 보일러 관군의 음향공진에 의한 이상소음 발생 및 저감 연구 (A study on the reduction of noise and vibration by acoustic resonance in the tube bank of a circulating fluidized bed combustion boiler)

  • 박응규;송근복;김원현;주원호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.101-106
    • /
    • 2011
  • In the present paper, the phenomena of abnormal noise and vibration due to acoustic resonance of CFBC(Circulating Fluidized Bed Combustion) boiler was presented. The acoustic resonance which occurred in the gas path of CFBC boiler system was caused by coincidence of vortex shedding frequency of tube bank and acoustic natural frequency of duct and hopper. And, the phenomena of beating arose from the interference of two closed resonant waves at 66.4Hz and 70.8Hz. There are two control methods for acoustic resonance in this system. The first method is to change the vortex shedding frequency from the structural alterations on the tube bank. And the second method is to change the acoustic natural frequency of the gas path with the installation of anti-noise baffles. The second one which is relatively easy to apply, was adapted in this study. As a result, the noise and vibration level have been decreased by 41dB and 94% at 66.4Hz, respectively. And the improvement of noise and vibration at 70.8Hz was identified by sensory evaluation.

  • PDF

회전하는 유체이송 외팔 파이프의 동특성 해석 (The Dynamic Characteristics of Rotating Cantilever Pipe Conveying Fluid)

  • 윤한익;손인수
    • 한국소음진동공학회논문집
    • /
    • 제13권1호
    • /
    • pp.26-32
    • /
    • 2003
  • The vibrational system of this study is consisted of a rotating cantilever pipe and the flow in the pipe. The equation of motion is derived by using Lagrange equation. The influences of the rotating angular velocity and the velocities of fluid flow in the pipe have been studied on the dynamic characteristics of a rotating cantilever pipe by numerical method. The tip-amplitude of axial vibration and maximum tip-deflection of axial direction of cantilever pipe are directly proportional to the velocity of fluid and rotating angular velocity of pipe In the steady state. respectively The bending tip-amplitude of cantilever pipe is inversely proportional to the velocity of fluid in the steady state. When the rotating angular velocity is 5 rad/s, the velocity of fluid increase with increasing the natural frequency of axial vibration at second mode and third mode, but the natural frequency axial direction of first mode is decreased. The natural frequency of lateral direction is decreased due to increase of the rotating angular velocity. It identifies that the Influence of velocity of fluid give much variation lower mode of vibration in lateral direction. And the Influence of velocity of fluid give much variation higher mode of vibration in axial direction.

축류송풍기 부착형 공냉식 열교환기의 진동저감 (Vibration Reduction of an Air Cooled Heat Exchanger with Axial Flow Fan)

  • 정구충;최연선
    • 한국소음진동공학회논문집
    • /
    • 제11권6호
    • /
    • pp.163-168
    • /
    • 2001
  • Vibration problems occurred in an air cooled heat exchanger with axial flow fan for a petrochemical plant were investigated. Experimental field test and theoretical verification were performed. To find the main cause of the high vibration of the fan at the air inlet of the axial fan, the frequency spectrum was measured. The natural frequency of the driving support of the heat exchanger was numerically calculated. Both of the measured and the natural frequency were approximately equal to the blade passing frequency. Because it was difficult to modify the structure of the driving support during the normal operation of the plant, the blade number of the fan was increased, which greatly reduced the vibration level of the heat exchanger.

  • PDF

해상 풍력 발전 JACKET의 고유 진동수에 관한 연구 (A Study of Natural Frequency of Offshore Wind Turbine JACKET)

  • 이정탁;손충렬;이강수;원종범;김상호;김태용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.434-438
    • /
    • 2006
  • The purpose of this paper is that investigates the Natural Frequency behavior characteristic of Wind Turbine Jacket Type Tower model, and calculated that the stress values of Thrust Load, Wave Load, Wind Load, Current Loda, Gravity Load, etc., environment evaluation analysis during static Operating Wind Turbine Jacket Type Tower model, carried out of Natural Frequency analysis of total load case to stress matrix, Frequency calculated that calculated Add Natural Frequency to stiffness matrix for determinant to stress results. The finite element analysis is performed with commercial F.E.M program (ANSYS) on the basis of the natural frequency and mode shape.

  • PDF

해상 풍력 발전 JACKET의 고유진동수에 관한 연구 (A Study of Natural Frequency of Offshore Wind Turbine JACKET)

  • 이강수;이정탁;손충렬
    • 한국소음진동공학회논문집
    • /
    • 제17권2호
    • /
    • pp.130-135
    • /
    • 2007
  • The purpose of this paper is that investigates the Natural Frequency behavior characteristic of wind turbine jacket type tower model, and calculated that the stress values of thrust load, wave load, wind load, current loda, gravity load, etc., environment evaluation analysis during static operating wind turbine jacket type tower model, carried out of natural frequency analysis of total load case to stress matrix, frequency calculated that calculated add natural frequency to stiffness matrix for determinant to stress results. The finite element analysis is performed with commercial F.E.M program (ANSYS) on the basis of the natural frequency and mode shape.