• Title/Summary/Keyword: Nanostructured Thin Film

Search Result 53, Processing Time 0.019 seconds

Functional Nannomaterials Based on Nanoporous Template

  • Kim, Jin-Gon;Yang, Seung-Yun;Byeon, Jin-Seok;Jeon, Geum-Hye;Jo, A-Ra
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.7.1-7.1
    • /
    • 2011
  • Nanoporous templates have been widely used for the development of new functional nanostructured materials suitable for electronics, optics, magnetism, and energy storage materials. We have prepared nanoporous templates by using thin films of mixtures of polystyrene-block-poly (methyl methacrylate) (PS-b-PMMA) and PMMA homopolymers. These templates have cylindrical nanoholes spanning the entire thickness of the film. Some applications of nanoporous templates are introduced: a) anti-reflective coating, b) the preparation of conducting polymer nanowires of poly (pyrrole), poly (3,4-ethylenedioxy-thiopene) onto a glass coated with indium-tin-oxide, and c) the separation membranes for biomaterials. We found that when the pore fraction of nanoholes in the film was ~0.68, almost zero reflectance at a specific wavelength, which can be changed with film thickness, was achieved at visible wavelengths Furthermore, ultra high density array of conducting nanowires was successfully prepared onto various substrates including flexible polymer. Due to highly alignment of polymer chain along the nanowire direction, the conductivity was much increased. Furthermore, these nanoporous films were found to be very effective for the separation of human Rhinovirus type 14 (HRV 14), major pathogen of a common cold in humans, from the buffer solution. We also found that when the pore size was effectively controlled down to 6 nm, a single file diffusion was observed.

  • PDF

Hydrothermally Synthesis Nanostructure ZnO Thin Film for Photocatalysis Application (수열합성법으로 합성된 산화아연 나노 구조 박막의 광촉매적 응용)

  • Shinde, N.M.;Nam, Min Sik;Patil, U.M.;Jun, Seong Chan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.1
    • /
    • pp.97-101
    • /
    • 2016
  • ZnO has nanostructured material because of unique properties suitable for various applications. Amongst all chemical and physics methods of synthesis of ZnO nanostructure, the hydrothermal method is attractive for its simplicity and environment friendly condition. Nanostructure ZnO thin films have been successfully synthesized on fluorine doped tin oxide (FTO) substrate using hydrothermal method. A possible growth mechanism of the various nanostructures ZnO is discussed in schematics. The prepared materials were characterized by standard analytical techniques, i.e., X-ray diffraction (XRD) and Field-emission scanning electron microscopy (SEM). The XRD study showed that the obtained ZnO nanostructure thin films are in crystalline nature with hexagonal wurtzite phase. The SEM image shows substrate surface covered with nanostructure ZnO nanrod. The UV-vis absorption spectrum of the synthesized nanostructure ZnO shows a strong excitonic absorption band at 365 nm which indicate formation nanostructure ZnO thin film. Photoluminescence spectra illustrated two emission peaks, with the first one at 424 nm due to the band edge emission of ZnO and the second broad peak centered around 500 nm possibly due to oxygen vacancies in nanostructure ZnO. The Raman measurements peaks observed at $325cm^{-1}$, $418cm^{-1}$, $518cm^{-1}$ and $584cm^{-1}$ indicated that nanostrusture ZnO thin film is high crystalline quality. We trust that nanostructure ZnO material can be effectively will be used as a highly active and stable phtocatalysis application.

Electrospinning Technology for Novel Energy Conversion & Storage Materials

  • Jo, Seong-Mu;Kim, Dong-Yeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.1.1-1.1
    • /
    • 2011
  • Electrospinning has known to be very effective tool for production of versatile one-dimensional (1D) nanostructured materials such as nanofibers, nanorod, and nanotubes and for easily assembly to two-, three-dimensional(2D, 3D) nanostructures such as thin film, membrane, and nonwoven web, etc. We have studied on the electrospinning technology for novel energy storage and conversion materials such as advanced separator, dye sensitized solar cell, supercapacitor, etc. High heat-resistive nanofibrous membrane as a new separator for future lithium ion polymer battery was prepared by electrospinning of PVdF based composite solution. The novel nanofibrous composite nonwovens have tensile strength of above 50 MPa and modulus of above 1.3 GPa. The internal structure of the electrospun composite nanofiber with a diameter of few hundreds nanometer were composed of core-shell nanostructure. And also electrospun $TiO_2$ nanorod/nanosphere based dye-sensitized solar cells with high efficiency are successfully prepared. Some battery performance will be introduced.

  • PDF

Cellular Adhesions and Protein Dynamics on Carbon Nanotube/Polymer composites Surfaces

  • Gang, Min-Ji;Wang, Mun-Pyeong;Im, Yeon-Min;Kim, Jin-Guk;Gang, Dong-U
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.45.2-45.2
    • /
    • 2010
  • Possessing of carbon nanotubes in biopolymer intrigued much interest due to their mechanical and unique nanoscale surface properties. Surface stiffness can be controlled by the amount of carbon nanotubes in polymer and surface wettability can be altered by the order of nanoscale surface roughness. Protein adsorption mechanism on nanostructured carbon nanotube/polymer thin film will be discussed in this study. In addition, we identified that mechanical stimuli also contribute the messenchymal stem cell and bone cell interactions. Importantly, live cell analysis system also showed altered morphology and cellular functions. Thus, embedding of carbon nanostructures simultaneously contribute to protein adsorption and cellular interactions. In conclusion, this study demonstrated the evidence that nanoscale surface features determine the subsequent biological interactions, such as protein adsorption and cellular interactions.

  • PDF

Fabrication of 64x1 linear array infrared detector using Hg1-xCdxTe (Hg1-xCdxTe를 이용한 64x1 선형 적외선 감지 소자 제작)

  • Kim, Jin-Sang;Suh, Sang-Hee
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.135-138
    • /
    • 2009
  • $64{\times}1$ forcal plane infrared detector has been fabricated by using HgCdTe epi layer. HgCdTe was grown on GaAs substrate by using metal organic chemical vapor deposition. This paper describes key developments in the epi layer growth and device fabrication process. The performance of IR imaging system is summarized.

A Study on the Deposition of Permalloy Nanostructured Thin Film Utilizing Supersonic Deposition of Nanoparticles Formed by Laser Ablation of Microparticles (마이크로입자의 레이저 Ablation으로 형성된 나노입자의 수펴소닉 적층법을 이용한 퍼멀로이 나노구조박막 적층에 관한 연구)

  • Yun, Eui-Jung;Jung, Myunghee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.5
    • /
    • pp.478-483
    • /
    • 2005
  • In this paper, we synthesized 10 to 20 nm diameter NiFe nanoparticles and nanoparticle films utilizing supersonic jet deposition of nanoparticle aerosols generated by laser ablation of $30\;to\;45{\mu}m$ diameter permalloy $(Ni_{81}Fe_{19} \;at\;{\%})$ microparticles. The component and composition of the nanoparticles were characterized by an energy dispersive X-ray spectroscopy. The morphology of the nanoparticles and nanoparticle films was analyzed by a high-resolution transmission electron microscopy and a scanning electron microscopy, respectively. The experimental results showed that the nanoparticles and nanoparticle films have remarkable properties with an excellent preservation of the composition of feedstock permalloy microparticles. The purpose of the present work is to present details on the composition and nanostructural characterizations for NiFe nanoparticles and nanoparticle films prepared by laser ablation of microparticles (LAM).

Ultrahigh supercapacitance in cobalt oxide nanorod film grown by oblique angle deposition technique

  • Kannan, V.;Choi, Jong-Hyeok;Park, Hyun-Chang;Kim, Hyun-Seok
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1399-1402
    • /
    • 2018
  • Nanorod films of cobalt oxide ($Co_3O_4$) have been grown by a unique oblique angle deposition (OAD) technique in an e-beam evaporator for supercapacitor electrode applications. This technique offers a non-chemical route to achieve large aspect ratio nanorods. The fabricated electrodes at OAD $80^{\circ}$ exhibited a specific capacitance of 2875 F/g. The electrochemically active surface area was $1397cm^{-2}$, estimated from the non-Faradaic capacitive current region. Peak energy and power densities obtained for $Co_3O_4$ nanorods were 57.7 Wh/Kg and 9.5 kW/kg, respectively. The $Co_3O_4$ nanorod electrode showed a good endurance of 2000 charge-discharge cycles with 62% retention. The OAD approach for fabricating supercapacitor nanostructured electrodes can be exploited for the fabrication of a broad range of metal oxide materials.

Mechanical Properties of MoN-Cu Coatings according to Pre-treatment of AISI H13 Tool Steel (H13 공구강의 전처리에 따른 Mo-Cu-N 코팅의 기계적 특성)

  • Park, Hyun-Jun;Moon, Kyoung-Il;Kim, Sang-Sub
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.6
    • /
    • pp.343-350
    • /
    • 2020
  • The degradation of mechanical properties of nitride coatings to steel substrates is one of the main challenges for industrial applications. In this study, plasma nitriding treatment was used in order to increase the mechanical properties of Mo-Cu-N coating to the H13 tool steel. The nanostructured Mo-Cu-N coating was deposited using pulsed DC magnetron sputtering method with a single alloy Mo-Cu target. Mechanical properties of MoN-Cu coated samples after nitriding were found to be relatively better than non-nitrided MoN-Cu coating.

MOCVD of $Bi_2Te_3$-based thermoelectric materials and their material characteristics (MOCVD법으로 성장된 열전재료용 $Bi_2Te_3$ 박막의 특성)

  • Kim, Jeong-Hun;Jung, Yong-Chul;Suh, Sang-Hee;Ju, Byeong-Kwon;Kim, Jin-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.13-15
    • /
    • 2005
  • The growth of $Bi_2Te_3$ thin films on (001) GaAs substrates by metal organic chemical vapour deposition (MOCVD) is discussed in this paper. The results of surface morphology, electrical and thermoelectrical properties as a function of growth parameters are given. The surface morphologies of $Bi_2Te_3$ films were strong1y dependent on the deposition temperatures. Surface morphologies varied from step-flow growth mode to island coalescence structures depending on deposition temperature. In-plane carrier concentration and electrical Hall mobility were highly dependent on precursor's ratio of Te/Bi and deposition temperature. The high Seebeck coefficient (of $-160{\mu}VK^{-1}$) and good surface morphology of our result is promising for $Bi_2Te_3$ based thermoelectric thin film and two dimensional supperlattice device applications.

  • PDF

An Electrochemical Sensor for Hydrazine Based on In Situ Grown Cobalt Hexacyanoferrate Nanostructured Film

  • Kang, Inhak;Shin, Woo-seung;Manivannan, Shanmugam;Seo, Yeji;Kim, Kyuwon
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.277-285
    • /
    • 2016
  • There is a growing demand for simple, cost-effective, and accurate analytical tools to determine the concentrations of biological and environmental compounds. In this study, a stable electroactive thin film of cobalt hexacyanoferrate (Cohcf) was prepared as an in situ chemical precipitant using electrostatic adsorption of $Co^{2+}$ on a silicate sol-gel matrix (SSG)-modified indium tin oxide electrode pre-adsorbed with $[Fe(CN)_6]^{3-}$ ions. The modified electrode was characterized by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and electrochemical techniques. Electrocatalytic oxidation of hydrazine on the modified electrode was studied. An electrochemical sensor for hydrazine was constructed on the SSG-Cohcf-modified electrode. The oxidation peak currents showed a linear relationship with the hydrazine concentration. This study provides insight into the in situ growth and stability behavior of Cohcf nanostructures and has implications for the design and development of advanced electrode materials for fuel cells and sensor applications.