Browse > Article
http://dx.doi.org/10.5229/JECST.2016.7.4.277

An Electrochemical Sensor for Hydrazine Based on In Situ Grown Cobalt Hexacyanoferrate Nanostructured Film  

Kang, Inhak (Electrochemistry Laboratory for Sensors & Energy (ELSE), Department of Chemistry, Incheon National University)
Shin, Woo-seung (Electrochemistry Laboratory for Sensors & Energy (ELSE), Department of Chemistry, Incheon National University)
Manivannan, Shanmugam (Electrochemistry Laboratory for Sensors & Energy (ELSE), Department of Chemistry, Incheon National University)
Seo, Yeji (Electrochemistry Laboratory for Sensors & Energy (ELSE), Department of Chemistry, Incheon National University)
Kim, Kyuwon (Electrochemistry Laboratory for Sensors & Energy (ELSE), Department of Chemistry, Incheon National University)
Publication Information
Journal of Electrochemical Science and Technology / v.7, no.4, 2016 , pp. 277-285 More about this Journal
Abstract
There is a growing demand for simple, cost-effective, and accurate analytical tools to determine the concentrations of biological and environmental compounds. In this study, a stable electroactive thin film of cobalt hexacyanoferrate (Cohcf) was prepared as an in situ chemical precipitant using electrostatic adsorption of $Co^{2+}$ on a silicate sol-gel matrix (SSG)-modified indium tin oxide electrode pre-adsorbed with $[Fe(CN)_6]^{3-}$ ions. The modified electrode was characterized by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and electrochemical techniques. Electrocatalytic oxidation of hydrazine on the modified electrode was studied. An electrochemical sensor for hydrazine was constructed on the SSG-Cohcf-modified electrode. The oxidation peak currents showed a linear relationship with the hydrazine concentration. This study provides insight into the in situ growth and stability behavior of Cohcf nanostructures and has implications for the design and development of advanced electrode materials for fuel cells and sensor applications.
Keywords
Cobalt hexacyanoferrate; Electrocatalysis; Electrochemical sensor; Hydrazine; Sol-gel matrix;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. Q. Liu and H. Y. Chen, Journal of Electroanalytical Chemistry, 2002, 528, 190-195.   DOI
2 M. H. Pournaghi-Azar and H. Dastangoo, Journal of Electroanalytical Chemistry, 2002, 523(1), 26-33.   DOI
3 P. Wang, X. Jing, W. Zhang and G. Zhu, Journal of Solid State Electrochemistry, 2001, 5(6), 369-374.   DOI
4 X. Cui, L. Hong and X. Lin, Journal of Electroanalytical Chemistry, 2002, 526(1), 115-124.   DOI
5 A. M. Vinu Mohan, G. Rambabu, K. K. Aswini and V. M. Biju, Thin Solid Films, 2014, 565, 207-214.   DOI
6 S. M. Chen, Electrochimica Acta, 1998, 43(21), 3359-3369.   DOI
7 K. Deng, C. Li, X. Qiu, J. Zhou and Z. Hou, Electrochimica Acta, 2015, 174, 1096-1103.   DOI
8 X. Luo, J. Pan, K. Pan, Y. Yu, A. Zhong, S. Wei, J. Li, J. Shi and X. Li, Journal of Electroanalytical Chemistry, 2015, 745, 80-87.   DOI
9 F. Zhao, Y. Wang, X. Xu, Y. Liu, R. Song, G. Lu and Y. Li, ACS Applied Materials and Interfaces, 2014, 6(14), 11007-11012.   DOI
10 C. D. Wessells, R. A. Huggins and Y. Cui, Nature Communications, 2011, 2, 550.   DOI
11 P. J. Kulesza, M. A. Malik, A. K. Miecznikowski, A. Wolkiewicz, S. Zamponi, M. Berrettoni and R. Marassi, Journal of the Electrochemical Society, 1996, 143(1), L10-L12.   DOI
12 A. Bleuzen, C. Lomenech, V. Escax, F. Villain, F. Varret, C. Cartier Dit Moulin and M. Verdaguer, Journal of the American Chemical Society, 2000, 122(28), 6648-6652.   DOI
13 C. Cartier Dit Moulin, F. Villain, A. Bleuzen, M. A. Arrio, P. Sainctavit, C. Lomenech, V. Escax, F. Baudelet, E. Dartyge, J. J. Gallet and M. Verdaguer, Journal of the American Chemical Society, 2000, 122(28), 6653-6658.   DOI
14 A. Eftekhari, Mikrochimica Acta, 2003, 141(1-2), 15-21.   DOI
15 S. Thangavel and R. Ramaraj, Journal of Nanoscience and Nanotechnology, 2009, 9(4), 2353-2363.   DOI
16 J. Du, Y. Wang, X. Zhou, Z. Xue, X. Liu, K. Sun and X. Lu, Journal of Physical Chemistry C, 2010, 114(35), 14786-14793.   DOI
17 F. N. Crespilho, V. Zucolotto, C. M. A. Brett, O. N. Oliveira Jr and F. C. Nart, Journal of Physical Chemistry B, 2006, 110(35), 17478-17483.   DOI
18 A. Ahmadalinezhad, A. K. M. Kafi and A. Chen, Electrochemistry Communications, 2009, 11(10), 2048-2051.   DOI
19 G. Chang, Y. Luo, W. Lu, J. Hu, F. Liao and X. Sun, Thin Solid Films, 2011, 519(18), 6130-6134.   DOI
20 Q. Yi, F. Niu and W. Yu, Thin Solid Films, 2011, 519(10), 3155-3161.   DOI
21 S. Durga, K. Ponmani1, S. Kiruthika, B. Muthukumaran, J. Electrochem. Sci. Technol, 2014, 5(3), 73-81.   DOI
22 S. Amlathe and V. K. Gupta, Analyst, 1988, 113(9), 1481-1483.   DOI
23 S. Manivannan, I. Kang and K. Kim, Langmuir, 2016, 32(7), 1890-1898.   DOI
24 S. Manivannan and R. Ramaraj, Journal of Nanoparticle Research, 2012, 14(6), 1-11.
25 S. Manivannan and K. Kim, Journal of Electroanalytical Chemistry, 2016, 776, 82-92.   DOI
26 S. Choudhury, G. K. Dey and J. V. Yakhmi, Journal of Crystal Growth, 2003, 258(1), 197-203.   DOI
27 S. Manivannan and R. Ramaraj, Journal of nanoparticle research, 2013, 15(10), 1-13.
28 F. Zhao, Y. Wang, X. Xu, Y. Liu, R. Song, G. Lu and Y. Li, ACS Applied Materials & Interfaces, 2014, 6(14), 11007-11012.   DOI
29 A. Naeemy, Journal of Electrochemical Science and Technology, 2015, 6(3), 88-94.   DOI
30 H. Heli, I. Eskandari, N. Sattarahmady and A. A. Moosavi-Movahedi, Electrochimica Acta, 2012, 77, 294-301.   DOI