• Title/Summary/Keyword: Nanosized

Search Result 235, Processing Time 0.026 seconds

Fabrication of porous titanium oxide-manganese oxide ceramics with enhanced anti-static and mechanical properties (우수한 대전방지 및 기계적 성질을 가지는 다공성 산화티탄-산화망간 세라믹스 제조)

  • Yu, Dongsu;Hwang, Kwang-Taek;Kim, Jong-Young;Jung, Jong-Yeol;Baik, Seung-Woo;Shim, Wooyoung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.6
    • /
    • pp.263-270
    • /
    • 2018
  • Recently, porous ceramic materials with anti-static performance are urgently needed for semiconductor and OLED/LCD display manufacturing industry. In this work, we fabricated porous titanium manganese oxide ceramics having the surface resistivity of $10^8-10^{10}$ ohm and enhanced mechanical strength by partial sintering method using nanosized titanium oxide. By addition of nano-sized titanium oxide in the matrix, neck formation between grains was strengthened, which remarkably increased flexural strength up to 170 MPa (@porosity: 15 %), 110 MPa (@porosity: 31 %), compared to 80 MPa (@porosity: 26 %) for pristine titanium manganese oxide ceramics. We evaluated the performances of our ceramics as air-floating module for OLED flexible display manufacturing devices.

Fabrication of Molybdenum Alloys with Improved Fracture Toughness through the Dispersion of Lanthanum Oxide (란타넘 산화물의 분산을 통해 향상된 파괴인성을 갖는 몰리브데넘 합금의 제조)

  • Choi, Won June;Park, Chun Woong;Park, Jung Hyo;Kim, Young Do;Byun, Jongmin
    • Journal of Powder Materials
    • /
    • v.26 no.3
    • /
    • pp.208-213
    • /
    • 2019
  • In this study, lanthanum oxide ($La_2O_3$) dispersed molybdenum ($Mo-La_2O_3$) alloys are fabricated using lanthanum nitrate solution and nanosized Mo particles produced by hydrogen reduction of molybdenum oxide. The effect of $La_2O_3$ dispersion in a Mo matrix on the fracture toughness at room temperature is demonstrated through the formation behavior of $La_2O_3$ from the precursor and three-point bending test using a single-edge notched bend specimen. The relative density of the $Mo-0.3La_2O_3$ specimen sintered by pressureless sintering is approximately 99%, and $La_2O_3$ with a size of hundreds of nanometers is uniformly distributed in the Mo matrix. It is also confirmed that the fracture toughness is $19.46MPa{\cdot}m^{1/2}$, an improvement of approximately 40% over the fracture toughness of $13.50MPa{\cdot}m^{1/2}$ on a pure-Mo specimen without $La_2O_3$, and this difference in the fracture toughness occurs because of the changes in fracture mode of the Mo matrix caused by the dispersion of $La_2O_3$.

Austenite Stability and Mechanical Properties of Nanocrystalline FeNiCrMoMnSiC Alloy Fabricated by Spark Plasma Sintering (방전플라즈마소결로 제조된 나노결정 FeNiCrMoMnSiC 합금의 오스테나이트 안정성과 기계적 특성)

  • Park, Jungbin;Jeon, Junhyub;Seo, Namhyuk;Kim, Gwanghun;Son, Seung Bae;Lee, Seok-Jae
    • Journal of Powder Materials
    • /
    • v.28 no.4
    • /
    • pp.336-341
    • /
    • 2021
  • In this study, a nanocrystalline FeNiCrMoMnSiC alloy was fabricated, and its austenite stability, microstructure, and mechanical properties were investigated. A sintered FeNiCrMoMnSiC alloy sample with nanosized crystal was obtained by high-energy ball milling and spark plasma sintering. The sintering behavior was investigated by measuring the displacement according to the temperature of the sintered body. Through microstructural analysis, it was confirmed that a compact sintered body with few pores was produced, and cementite was formed. The stability of the austenite phase in the sintered samples was evaluated by X-ray diffraction analysis and electron backscatter diffraction. Results revealed a measured value of 51.6% and that the alloy had seven times more austenite stability than AISI 4340 wrought steel. The hardness of the sintered alloy was 60.4 HRC, which was up to 2.4 times higher than that of wrought steel.

Pressureless Sintering and Microstructure of Pure Tungsten Powders Prepared by Ultrasonic Spray Pyrolysis (초음파 분무 열분해법으로 제조한 텅스텐 분말의 상압소결과 미세조직)

  • Heo, Youn Ji;Lee, Eui Seon;Oh, Sung-Tag;Byun, Jongmin
    • Journal of Powder Materials
    • /
    • v.29 no.3
    • /
    • pp.247-251
    • /
    • 2022
  • This study demonstrates the effect of the compaction pressure on the microstructure and properties of pressureless-sintered W bodies. W powders are synthesized by ultrasonic spray pyrolysis and hydrogen reduction using ammonium metatungstate hydrate as a precursor. Microstructural investigation reveals that a spherical powder in the form of agglomerated nanosized W particles is successfully synthesized. The W powder synthesized by ultrasonic spray pyrolysis exhibits a relative density of approximately 94% regardless of the compaction pressure, whereas the commercial powder exhibits a relative density of 64% under the same sintering conditions. This change in the relative density of the sintered compact can be explained by the difference in the sizes of the raw powder and the densities of the compacted green body. The grain size increases as the compaction pressure increases, and the sintered compact uniaxially pressed to 50 MPa and then isostatically pressed to 300 MPa exhibits a size of 0.71 m. The Vickers hardness of the sintered W exhibits a high value of 4.7 GPa, mainly due to grain refinement.

Effect of LiCoO2-Coated Cathode on Performance of Molten Carbonate Fuel Cell

  • Kim, Dohyeong;Kim, Hyung Tae;Song, Shin Ae;Kim, Kiyoung;Lim, Sung Nam;Woo, Ju Young;Han, Haksoo
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.112-119
    • /
    • 2022
  • Molten carbonate fuel cells (MCFCs) are environmentally friendly, large-capacity power generation devices operated at approximately 650℃. If MCFCs are to be commercialized by improving their competitiveness, their cell life should be increased by operating them at lower temperatures. However, a decrease in the operating temperature causes a reduction in the cell performance because of the reduction in the electrochemical reaction rate. The cell performance can be improved by introducing a coating on the cathode of the cell. A coating with a high surface area expands the triple phase boundaries (TPBs) where the gas and electrolyte meet on the electrode surface. And the expansion of TPBs enhances the oxygen reduction reaction of the cathode. Therefore, the cell performance can be improved by increasing the reaction area, which can be achieved by coating nanosized LiCoO2 particles on the cathode. However, although a coating improves the cell performance, a thick coating makes gas difficult to diffuse into the pore of the coating and thus reduces the cell performance. In addition, LiCoO2-coated cathode cell exhibits stable cell performance because the coating layer maintains a uniform thickness under MCFC operating conditions. Therefore, the performance and stability of MCFCs can be improved by applying a LiCoO2 coating with an appropriate thickness on the cathode.

Exosomes: Nomenclature, Isolation, and Biological Roles in Liver Diseases

  • Seol Hee Park;Eun Kyeong Lee;Joowon Yim;Min Hoo Lee;Eojin Lee;Young-Sun Lee;Wonhyo Seo
    • Biomolecules & Therapeutics
    • /
    • v.31 no.3
    • /
    • pp.253-263
    • /
    • 2023
  • The biogenesis and biological roles of extracellular vesicles (EVs) in the progression of liver diseases have attracted considerable attention in recent years. EVs are membrane-bound nanosized vesicles found in different types of body fluids and contain various bioactive materials, including proteins, lipids, nucleic acids, and mitochondrial DNA. Based on their origin and biogenesis, EVs can be classified as apoptotic bodies, microvesicles, and exosomes. Among these, exosomes are the smallest EVs (30-150 nm in diameter), which play a significant role in cell-to-cell communication and epigenetic regulation. Moreover, exosomal content analysis can reveal the functional state of the parental cell. Therefore, exosomes can be applied to various purposes, including disease diagnosis and treatment, drug delivery, cell-free vaccines, and regenerative medicine. However, exosome-related research faces two major limitations: isolation of exosomes with high yield and purity and distinction of exosomes from other EVs (especially microvesicles). No standardized exosome isolation method has been established to date; however, various exosome isolation strategies have been proposed to investigate their biological roles. Exosome-mediated intercellular communications are known to be involved in alcoholic liver disease and nonalcoholic fatty liver disease development. Damaged hepatocytes or nonparenchymal cells release large numbers of exosomes that promote the progression of inflammation and fibrogenesis through interactions with neighboring cells. Exosomes are expected to provide insight on the progression of liver disease. Here, we review the biogenesis of exosomes, exosome isolation techniques, and biological roles of exosomes in alcoholic liver disease and nonalcoholic fatty liver disease.

Photocatalytic and photoelectrocatalytic properties of anodic titanium dioxide nanotubes based on anodizing conditions (양극산화 조건에 따른 이산화티타늄 나노튜브의 광촉매 및 광전기화학적 특성)

  • Yeonjin Kim;Rin Jung;Jaewon Lee;JeongEun Yoo;Kiyoung Lee
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.2
    • /
    • pp.137-146
    • /
    • 2023
  • Nanosized TiO2 has been widely investigated in photoelectrochemical or photocatalytic applications due to their intrinsic properties such as suitable band position, high photocorrosion resistance, and surface area. In this study, to achieve the high efficiency in photoelectrochemical and photocatalytic performance, TiO2 nanotubular structures were formed by anodization at various temperatures and times. The morphological and crystal structure of the anodized TiO2 nanotubes (NTs) were characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD). The photoelectrochemical (PEC) properties and incident photon-to-current conversion efficiency (IPCE) of the TiO2 NTs were studied with different lengths and morphologies. From the detailed investigations, the optimum thickness of TiO2 nanotubes was 3 ㎛. Moreover, we found that the optimum photocatalytic pollutant removal efficiency of TiO2 nanotubes for photodegradation of Rhodamine B (RhB) under simulated solar light was 5.34 ㎛ of tube length.

Analysis of DC insulation and properties of epoxy/ceramic composites with nanosized ZnO/TiO2 fillers

  • Kwon, Jung-Hun;Kim, Yu-Min;Kang, Seong-Hwa;Kim, Pyung-Jung;Jung, Jong-Hoon;Lim, Kee-Joe
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.332-335
    • /
    • 2012
  • A molded transformer is maintenance-free, which makes it unnecessary to replace the insulating material, like in an oil-filled transformer, because the epoxy, which is a molded insulating resin, does not suffer variations in its insulating performance for heat cycles over a long time, as compared to insulating oil. In spite of these advantages, a molded transformer may still be accessed by the user, which is not good in regards to reliability or noise compared to the oil transformers. In particular, a distrust exists regarding reliability due to the long-term insulating performance. These properties have been studied in regards to the improvement of epoxy composites and molded transformer insulation. There have nevertheless been insufficient investigations into the insulation properties of epoxy composites. In this study, it is a researching of the epoxy for insulating material. In order to prepare the specimens, a main resin, a hardener, an accelerator, and a nano/micro filler were used. Varying amounts of TiO2 and ZnO nano fillers were added to the epoxy mixture along with a fixed amount of micro silica. This paper presents the DC insulation breakdown test, thermal expansion coefficient, and thermal conductivity results for the manufactured specimens. From these results, it has been found that the insulating performance of nano/micro epoxy composites is improved as compared to plain molded transformer insulation, and that nano/micro epoxy composites contribute to the reliability and compactness of molded transformers.

The development of encoded porous silicon nanoparticles and application to forensic purpose (코드화 다공성 실리콘 나노입자의 개발 및 법과학적 응용)

  • Shin, Yeo-Ool;Kang, Sanghyuk;Lee, Joonbae;Paeng, Ki-Jung
    • Analytical Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.247-253
    • /
    • 2009
  • Porous silicon films are electrochemically etched from crystalline silicon wafers in an aqueous solution of hydrofluoric acid(HF). Careful control of etching conditions (current density, etch time, HF concentration) provides films with precise, reproducible physical parameters (morphology, porosity and thickness). The etched pattern could be varied due to (1) current density controls pore size (2) etching time determines depth and (3) complex layered structures can be made using different current profiles (square wave, triangle, sinusoidal etc.). The optical interference spectrum from Fabry-Perot layer has been used for forensic applications, where changes in the optical reflectivity spectrum confirm the identity. We will explore a method of identifying the specific pattern code and can be used for identities of individual code with porous silicon based encoded nanosized smart particles.

Fabrication of SiOx Anode Active Materials Using Spherical Silica Powder and Shape Control Technology (구형 단분산 실리카 분말을 이용한 SiOx 음극활물질 제조 및 형상조절 기술)

  • Ju-Chan Kwon;Bok-Hyun Oh;Sang-Jin Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.12
    • /
    • pp.530-536
    • /
    • 2023
  • The theoretical capacity of silicon-based anode materials is more than 10 times higher than the capacity of graphite, so silicon can be used as an alternative to graphite anode materials. However, silicon has a much higher contraction and expansion rate due to lithiation of the anode material during the charge and discharge processes, compared to graphite anode materials, resulting in the pulverization of silicon particles during repeated charge and discharge. To compensate for the above issues, there is a growing interest in SiOx materials with a silica or carbon coating to minimize the expansion of the silicon. In this study, spherical silica (SiO2) was synthesized using TEOS as a starting material for the fabrication of such SiOx through heating in a reduction atmosphere. SiOx powder was produced by adding PVA as a carbon source and inducing the reduction of silica by the carbothermal reduction method. The ratio of TEOS to distilled water, the stirring time, and the amount of PVA added were adjusted to induce size and morphology, resulting in uniform nanosized spherical silica particles. For the reduction of the spherical monodisperse silica particles, a nitrogen gas atmosphere mixed with 5 % hydrogen was applied, and oxygen atoms in the silica were selectively removed by the carbothermal reduction method. The produced SiOx powder was characterized by FE-SEM to examine the morphology and size changes of the particles, and XPS and FT-IR were used to examine the x value (O/Si ratio) of the synthesized SiOx.