DOI QR코드

DOI QR Code

Effect of LiCoO2-Coated Cathode on Performance of Molten Carbonate Fuel Cell

  • Kim, Dohyeong (Manufacturing Process Platform R&D Department, Korea Institute of Industrial Technology) ;
  • Kim, Hyung Tae (Manufacturing Process Platform R&D Department, Korea Institute of Industrial Technology) ;
  • Song, Shin Ae (Manufacturing Process Platform R&D Department, Korea Institute of Industrial Technology) ;
  • Kim, Kiyoung (Manufacturing Process Platform R&D Department, Korea Institute of Industrial Technology) ;
  • Lim, Sung Nam (Manufacturing Process Platform R&D Department, Korea Institute of Industrial Technology) ;
  • Woo, Ju Young (Manufacturing Process Platform R&D Department, Korea Institute of Industrial Technology) ;
  • Han, Haksoo (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • Received : 2021.07.02
  • Accepted : 2021.09.10
  • Published : 2022.02.28

Abstract

Molten carbonate fuel cells (MCFCs) are environmentally friendly, large-capacity power generation devices operated at approximately 650℃. If MCFCs are to be commercialized by improving their competitiveness, their cell life should be increased by operating them at lower temperatures. However, a decrease in the operating temperature causes a reduction in the cell performance because of the reduction in the electrochemical reaction rate. The cell performance can be improved by introducing a coating on the cathode of the cell. A coating with a high surface area expands the triple phase boundaries (TPBs) where the gas and electrolyte meet on the electrode surface. And the expansion of TPBs enhances the oxygen reduction reaction of the cathode. Therefore, the cell performance can be improved by increasing the reaction area, which can be achieved by coating nanosized LiCoO2 particles on the cathode. However, although a coating improves the cell performance, a thick coating makes gas difficult to diffuse into the pore of the coating and thus reduces the cell performance. In addition, LiCoO2-coated cathode cell exhibits stable cell performance because the coating layer maintains a uniform thickness under MCFC operating conditions. Therefore, the performance and stability of MCFCs can be improved by applying a LiCoO2 coating with an appropriate thickness on the cathode.

Keywords

Acknowledgement

This research was supported by the New & Renewable Energy Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) financial grant from the Ministry of Trade, Industry & Energy, Republic of Korea [grant number 20163030031860]. This work was supported by a research grant from the Korea Institute of Industrial Technology.

References

  1. S. Lee, K. H. Nam, K. Seo, G. Kim, H. Han, Polymers, 2020, 12(7), 1604. https://doi.org/10.3390/polym12071604
  2. K. Seo, K. H. Nam, H. Han, Sci. Rep. 2020, 10, 1-9. https://doi.org/10.1038/s41598-019-56847-4
  3. J. P. Perez-Trujillo, F. Elizalde-Blancas, S. J. McPhail, M. Della Pietra, B. Bosio, Appl. Energy, 2020, 263, 114630. https://doi.org/10.1016/j.apenergy.2020.114630
  4. K. J. Lee, Y. J. Kim, S. Koomson, C. G. Lee, J. Electrochem. Sci. Technol. 2018, 9(2), 141-148. https://doi.org/10.5229/JECST.2018.9.2.141
  5. S. D. Priya, A. I. Selvakumar, A. S. Nesaraj, J. Electrochem. Sci. Technol. 2020, 11(2), 99-116. https://doi.org/10.33961/jecst.2019.00612
  6. L. Barelli, G. Bidini, S. Campanari, G. Discepoli, M. Spinelli, J. Power Sources 2016, 320, 332-342. https://doi.org/10.1016/j.jpowsour.2016.04.071
  7. P. Markewitz, W. Kuckshinrichs, W. Leitner, J. Linssen, P. Zapp, R. Bongartz, A. Schreiber, T. E. Muller, Energy Environ. Sci. 2012, 5(6), 7281-7305. https://doi.org/10.1039/c2ee03403d
  8. H. Morita, M. Kawase, Y. Mugikura, K. Asano, J. Power Sources 2010, 195(20), 6988-6996. https://doi.org/10.1016/j.jpowsour.2010.04.084
  9. C. Y. Yuh, J. Electrochem. Soc. 1991, 138(12), 3649. https://doi.org/10.1149/1.2085474
  10. H. V. P. Nguyen, M. G. Kang, H. C. Ham, S. H. Choi, J. Han, S. W. Nam, S.-A. Hong, S. P. Yoon, J. Electrochem. Soc. 2014, 161(4), F1458. https://doi.org/10.1149/2.0741414jes
  11. C. W. Lee, B. W. Kwon, M. G. Kang, H. C. Ham, S. P. Yoon, J. Han, Y. J. Kim, M. C. Lee, Int. J. Hydrogen Energy 2017, 42(49), 18514-18523. https://doi.org/10.1016/j.ijhydene.2017.04.142
  12. S. A. Song, H. T. Kim, K. Kim, S. N. Lim, S. P. Yoon, S. C. Jang, Int. J. Hydrogen Energy 2019, 44(23), 12085-12093. https://doi.org/10.1016/j.ijhydene.2019.03.080
  13. E. Antolini, Appl. Energy 2011, 88(12), 4274-4293. https://doi.org/10.1016/j.apenergy.2011.07.009
  14. S. G. Kim, S. P. Yoon, J. Han, S. W. Nam, T. H. Lim, I. H. Oh, S. A. Hong, J. Power Sources 2002, 110(1), 80-85. https://doi.org/10.1016/S0378-7753(02)00235-5
  15. L. Wu, W. H. Lee, J. Zhang, Mater. Today Proc. 2014, 1(1), 82-93. https://doi.org/10.1016/j.matpr.2014.09.017
  16. M. Tuccillo, O. Palumbo, M. Pavone, A. B. Munoz-Garcia, A. Paolone, S. Brutti, Crystals 2020, 10(6), 526. https://doi.org/10.3390/cryst10060526
  17. G. Kim, J. Kim, J. Jeong, D. Lee, M. Kim, S. Lee, S. Kim, H. Lee, H. Han, Int. J. Electrochem. Sci. 2019, 14, 7133-7148. https://doi.org/10.20964/2019.08.18