Browse > Article
http://dx.doi.org/10.33961/jecst.2021.00668

Effect of LiCoO2-Coated Cathode on Performance of Molten Carbonate Fuel Cell  

Kim, Dohyeong (Manufacturing Process Platform R&D Department, Korea Institute of Industrial Technology)
Kim, Hyung Tae (Manufacturing Process Platform R&D Department, Korea Institute of Industrial Technology)
Song, Shin Ae (Manufacturing Process Platform R&D Department, Korea Institute of Industrial Technology)
Kim, Kiyoung (Manufacturing Process Platform R&D Department, Korea Institute of Industrial Technology)
Lim, Sung Nam (Manufacturing Process Platform R&D Department, Korea Institute of Industrial Technology)
Woo, Ju Young (Manufacturing Process Platform R&D Department, Korea Institute of Industrial Technology)
Han, Haksoo (Department of Chemical and Biomolecular Engineering, Yonsei University)
Publication Information
Journal of Electrochemical Science and Technology / v.13, no.1, 2022 , pp. 112-119 More about this Journal
Abstract
Molten carbonate fuel cells (MCFCs) are environmentally friendly, large-capacity power generation devices operated at approximately 650℃. If MCFCs are to be commercialized by improving their competitiveness, their cell life should be increased by operating them at lower temperatures. However, a decrease in the operating temperature causes a reduction in the cell performance because of the reduction in the electrochemical reaction rate. The cell performance can be improved by introducing a coating on the cathode of the cell. A coating with a high surface area expands the triple phase boundaries (TPBs) where the gas and electrolyte meet on the electrode surface. And the expansion of TPBs enhances the oxygen reduction reaction of the cathode. Therefore, the cell performance can be improved by increasing the reaction area, which can be achieved by coating nanosized LiCoO2 particles on the cathode. However, although a coating improves the cell performance, a thick coating makes gas difficult to diffuse into the pore of the coating and thus reduces the cell performance. In addition, LiCoO2-coated cathode cell exhibits stable cell performance because the coating layer maintains a uniform thickness under MCFC operating conditions. Therefore, the performance and stability of MCFCs can be improved by applying a LiCoO2 coating with an appropriate thickness on the cathode.
Keywords
Molten Carbonate Fuel Cell; $LiCoO_2$-Coated Cathode; Triple Phase Boundary; Improved Cell Performance; Stable Long-Term Operation;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 M. Tuccillo, O. Palumbo, M. Pavone, A. B. Munoz-Garcia, A. Paolone, S. Brutti, Crystals 2020, 10(6), 526.   DOI
2 G. Kim, J. Kim, J. Jeong, D. Lee, M. Kim, S. Lee, S. Kim, H. Lee, H. Han, Int. J. Electrochem. Sci. 2019, 14, 7133-7148.   DOI
3 H. V. P. Nguyen, M. G. Kang, H. C. Ham, S. H. Choi, J. Han, S. W. Nam, S.-A. Hong, S. P. Yoon, J. Electrochem. Soc. 2014, 161(4), F1458.   DOI
4 S. Lee, K. H. Nam, K. Seo, G. Kim, H. Han, Polymers, 2020, 12(7), 1604.   DOI
5 K. Seo, K. H. Nam, H. Han, Sci. Rep. 2020, 10, 1-9.   DOI
6 J. P. Perez-Trujillo, F. Elizalde-Blancas, S. J. McPhail, M. Della Pietra, B. Bosio, Appl. Energy, 2020, 263, 114630.   DOI
7 K. J. Lee, Y. J. Kim, S. Koomson, C. G. Lee, J. Electrochem. Sci. Technol. 2018, 9(2), 141-148.   DOI
8 S. D. Priya, A. I. Selvakumar, A. S. Nesaraj, J. Electrochem. Sci. Technol. 2020, 11(2), 99-116.   DOI
9 P. Markewitz, W. Kuckshinrichs, W. Leitner, J. Linssen, P. Zapp, R. Bongartz, A. Schreiber, T. E. Muller, Energy Environ. Sci. 2012, 5(6), 7281-7305.   DOI
10 H. Morita, M. Kawase, Y. Mugikura, K. Asano, J. Power Sources 2010, 195(20), 6988-6996.   DOI
11 C. Y. Yuh, J. Electrochem. Soc. 1991, 138(12), 3649.   DOI
12 C. W. Lee, B. W. Kwon, M. G. Kang, H. C. Ham, S. P. Yoon, J. Han, Y. J. Kim, M. C. Lee, Int. J. Hydrogen Energy 2017, 42(49), 18514-18523.   DOI
13 L. Wu, W. H. Lee, J. Zhang, Mater. Today Proc. 2014, 1(1), 82-93.   DOI
14 S. A. Song, H. T. Kim, K. Kim, S. N. Lim, S. P. Yoon, S. C. Jang, Int. J. Hydrogen Energy 2019, 44(23), 12085-12093.   DOI
15 E. Antolini, Appl. Energy 2011, 88(12), 4274-4293.   DOI
16 S. G. Kim, S. P. Yoon, J. Han, S. W. Nam, T. H. Lim, I. H. Oh, S. A. Hong, J. Power Sources 2002, 110(1), 80-85.   DOI
17 L. Barelli, G. Bidini, S. Campanari, G. Discepoli, M. Spinelli, J. Power Sources 2016, 320, 332-342.   DOI