• Title/Summary/Keyword: Nanoscale dot

Search Result 21, Processing Time 0.03 seconds

Efficient Design of BCD-EXCESS 3 Code Converter Using Quantum-Dot Cellular Automata (QCA를 이용한 효율적인 BCD-3초과 코드 변환기 설계)

  • You, Young-Won;Jeon, Jun-Cheol
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.6
    • /
    • pp.700-704
    • /
    • 2013
  • Quantum-dot cellular automata(QCA) is a new technology and it is an one of the alternative high performance over existing complementary metal-oxide semi-conductor(CMOS). QCA is nanoscale device and ultra-low power consumption compared with transistor-based technologies, and various circuits using QCA technology have been proposed. Binary-coded decimal(BCD), which represents decimal digits in binary, is mainly used in electronic circuits and Microprocessor, and it is comfortable in conversion operation but many data loss. In this paper, we present an BCD-EXCESS 3 Code converter which can be efficiently used for subtraction and half adjust. The proposed scheme has efficiently designed considering space and time complexities and minimization of noise, and it has been simulated and confirmed.

Fabrication of Sub-100 nm Embossing Patterns using Weakly-Polymerized Region via Long-Exposure Technique (LET) in Two-Photon Polymerization (긴 레이저 조사방식에 의한 저밀도 이광자 광중합 영역을 이용한 Sub-100nm 정밀도의 엠보싱 패턴제작)

  • Park, Sang-Hu;Lim, Tae-Woo;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.1 s.190
    • /
    • pp.64-70
    • /
    • 2007
  • A long-exposing technique (LET) has been conducted to create nanoscale patterns applicable to diverse micro-devices using two-photon polymerization (TPP). By the weakly-polymerized region via the LET, double-layered embossing patterns can be fabricated simply in a single step. The LET makes possible a voxel and its surrounding to be fully grown into more than 500 nm in lateral size and weakly-polymerized region (WPR), respectively. In the WPR. interconnecting ribs between voxels are generated, and they lead to the creation of double-layered dot patterns. Moreover, by controlling the distance between voxels, various shapes of interconnecting rib can be fabricated when the LET is applied. Various embossing patterns were fabricated to evaluate the usefulness of the proposed technique as a novel nanopatterning technique in TPP.

Fluorescent Nanoparticles: Synthesis and Applications (형광 나노입자: 합성 및 응용)

  • Kim, Y.K.;Song, B.K.;Lee, J.G.;Baek, Y.K.
    • Journal of Powder Materials
    • /
    • v.27 no.2
    • /
    • pp.154-163
    • /
    • 2020
  • Fluorescent nanoparticles are characterized by their unique properties such as luminescence, optical transparency, and sensitivity to various chemical environments. For example, semiconductor nanocrystals (quantum dots), which are nanophosphors doped with transition metal or rare earth ions, can be classified as fluorescent nanoparticles. Tuning their optical and physico-chemical properties can be carried out by considering and taking advantage of nanoscale effects. For instance, quantum confinement causes a much higher fluorescence with nanoparticles than with their bulk counterparts. Recently, various types of fluorescent nanoparticles have been synthesized to extend their applications to other fields. In this study, State-of-the-art fluorescent nanoparticles are reviewed with emphasis on their analytical and anti-counterfeiting applications and synthesis processes. Moreover, the fundamental principles behind the exceptional properties of fluorescent nanoparticles are discussed.

Study of transfer film in the sliding of nanoscale CuO-filled and fiber-reinforced polyphenylene sulfide (PPS) composites (CuO nanoparticle 및 fiber 로 구성된 PPS 복합재료의 sliding 조건하의 transfer film 에관한 연구)

  • Cho, Min-Haeng;Bahadur, Shyam;Park, Hye-Young;Kim, Yoon-Jun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.967-972
    • /
    • 2004
  • The role of transfer films formed during sliding of polymer composites against steel counterfaces was studied in terms of the tribological behaviors of composites. Four kinds of composites were included in this study: (1) unfilled PPS, (2) PPS+2%CuO, (3) PPS+2%CuO+5% carbon fiber (CF), and (4) PPS+2%CuO+15%Kevlar. The filler material CuO was in nanoscale particulate form and the reinforcing material was in the form of short fibers. The composites were prepared by compression molding at $310^{\circ}C$ and sliding tests were run in the pin-on-disk sliding configuration. The counterface was made of tool steel hardened to 55-60 HRC and finished to a surface roughness of 0.09-0.10 ${\mu}m$ Ra. Wear tests were run for 6 hrs at the sliding speed of 1 m/s and contact pressure of 0.65 MPa. Transfer films formed on the counterfaces during sliding were investigated using AFM and SEM. The results showed that as the transfer film became smooth and uniform, wear rate decreased. PPS+2%CuO+15%Kevlar composite showed the lowest steady state wear rate in this study and its transfer film showed the smoothest and the most uniform characteristics. The examination of worn surfaces of PPS+2%CuO composite using X-ray area scanning (dot mapping) showed back-transfer of steel counterface material to the polymer pin surface. This behavior is believed to strengthen the polymer pin surface during sliding thereby contributing to the decrease in wear rate.

  • PDF

Self- and Artificially-Controlled ZnO Nanostructures by MOCVD (MOCVD을 이용하여 자발적 및 인위적으로 제어된 산화아연 나노구조)

  • Kim, Sang-Woo;Fujita, Shizuo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.9-10
    • /
    • 2005
  • We report on the fabrication and characterization of self- and artificially-controlled ZnO nanostructures have been investigated to establish nanostructure blocks for ZnO-based nanoscale device application. Systematic realization of self- and artificially-controlled ZnO nanostructures on $SiO_2/Si$ substrates was proposed and successfully demonstrated utilizing metalorganic chemical vapor deposition (MOCVD) in addition with a focused ion beam (FIB) technique. Widely well-aligned two-dimensional ZnO nanodot arrays ($4{\sim}10^4$ nanodots of 130-nm diameter and 9-nm height over $150{\sim}150{\mu}m^2$ with a period of 750 nm) have been realized by MOCVD on $SiO_2/Si$ substrates patterned by FIB. A low-magnification FIB nanopatterning mode allowed the periodical nanopatterning of the substrates over a large area in a short processing time. Ga atoms incorporated into the surface areas of FIB-patterned nanoholes during FIB engraving were found to play an important role in the artificial control of ZnO, resulting in the production of ZnO nanodot arrays on the FIB-nanopatterned areas. The nanodots evolved into dot clusters and rods with increasing MOCVD growth time.

  • PDF

Double Exposure Laser Interference Lithography for Pattern Diversity using Ultraviolet Continuous-Wave Laser

  • Ma, Yong-Won;Park, Jun Han;Yun, Dan Hee;Gwak, Cheongyeol;Shin, Bo Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.2
    • /
    • pp.9-14
    • /
    • 2019
  • The newly discovered properties of periodic nanoscale patterns have increasingly sparked research interests in various fields. Along this direction, it is worth mentioning that there had been rare studies conducted on interference exposure, a method of creating periodic patterns. Additionally, these few studies seemed to validate the existence of only exact quadrangle shapes and dot patterns. This study asserted the formation of wavy patterns associated to using multiple exposures of the ratio of the first exposure intensity to the second exposure intensity. Such patterns were designed and constructed herein via overlapping of two Gaussian beams relative to certain rotation angles, and with a submicron structure fabricated based on a 360-nm continuous-wave laser. Results confirmed that the proposed double exposure laser interference lithography is able to create circular, elliptical and wavy patterns with no need for complex optical components.

Quantum Dot-Sensitized Solar Cells Based on Mesoporous TiO2 Thin Films (메조포러스 이산화티타늄 박막 기반 양자점-감응 태양전지)

  • Lee, Hyo Joong
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.1
    • /
    • pp.38-44
    • /
    • 2015
  • This review article summarizes the recent progress of quantum dot (QD)-sensitized solar cells based on mesoporous $TiO_2$ thin films. From the intrinsic characteristics of nanoscale inorganic QDs with various compositions, it was possible to construct a variety of 3rd-generation thin film solar cells by solution process. Depending on preparation methods, colloidal QD sensitizers are pre-prepared for later deposition onto the surface of $TiO_2$ or in-situ deposition of QDs from chemical bath is done for direct growth of QD sensitizers over substrates. Recently, colloidal QD sensitizers have shown an overall power conversion efficiency of ~7% by a very precise control of composition while a representative CdS/CdSe from chemical bath deposition have done ~5% with polysulfide electrolytes. In the near future, it is necessary to carry out systematic investigations for developing new hole-conducting materials and controlling interfaces within the cell, thus leading to an enhancement of both open-circuit voltage and fill factor while keeping the current high value of photocurrents from QDs towards more efficient and stable QD-sensitized solar cells.

Applications of XPS and SIMS for the development of Si quantum dot solar cell

  • Kim, Gyeong-Jung;Hong, Seung-Hwi;Kim, Yong-Seong;Lee, U;Kim, Yeong-Heon;Seo, Se-Yeong;Jang, Jong-Sik;Sin, Dong-Hui;Choe, Seok-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.297-297
    • /
    • 2010
  • Precise control of the position and density of doping elements at the nanoscale is becoming a central issue for realizing state-of-the-art silicon-based optoelectronic devices. As dimensions are scaled down to take benefits from the quantum confinement effect, however, the presence of interfaces and the nature of materials adjacent to silicon turn out to be important and govern the physical properties. Utilization of visible light is a promising method to overcome the efficiency limit of the crystalline Si solar cells. Si quantum dots (QDs) have been proposed as an emission source of visible light, which is based on the quantum confinement effect. Light emission in the visible wavelength has been reported by controlling the size and density of Si QDs embedded within various types of insulating matrix. For the realization of all-Si QD solar cells with homojunctions, it is prerequisite not only to optimize the impurity doping for both p- and n-type Si QDs, but also to construct p-n homojunctions between them. In this study, XPS and SIMS were used for the development of p-type and n-type Si quantum dot solar cells. The stoichiometry of SiOx layers were controlled by in-situ XPS analysis and the concentration of B and P by SIMS for the activated doping in Si nano structures. Especially, it has been experimentally evidenced that boron atoms in silicon nanostructures confined in SiO2 matrix can segregate into the Si/$SiO_2$ interfaces and the Si bulk forming a distinct bimodal spatial distribution. By performing quantitative analysis and theoretical modelling, it has been found that boron incorporated into the four-fold Si crystal lattice can have electrical activity. Based on these findings, p-type Si quantum dot solar cell with the energy-conversion efficiency of 10.2% was realized from a [B-doped $SiO_{1.2}$(2 nm)/$SiO_2(2\;nm)]^{25}$ superlattice film with a B doping level of $4.0{\times}10^{20}\;atoms/cm^2$.

  • PDF

Study on 40 nm Electron Beam Patterning by Optimization of Digitizing Method and Post Exposure Bake (전자선 석판 기술에서 디지타이징과 노광후굽기 최적화를 통한 40 nm 급 패턴 제작에 관한 연구)

  • Han, Sang-Yeon;Shin, Hyung-Cheol;Lee, Kwy-Ro
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.10
    • /
    • pp.23-30
    • /
    • 1999
  • We experimented on the sub 50nm patterning using E-beam lithography system. SAL601 negative E-beam resist was used for this experiment. In order to utilize the maximum ability of E-beam system, firstly, we reduced the PR thickness to 100nm, and the field size to 200 ${um}m$. Then PEB (Post Expose Bake) time/temperature, which is one of the very important factors when SAL601 is used, were reduced for minimum line width. In addition, digitizing is optimized for better results. Quantum wire and quantum dot which can be used for nanoscale memory device, such as single electron memory device, are fabricated using these developed lithography techniques.

  • PDF