• Title/Summary/Keyword: Nanopore

Search Result 63, Processing Time 0.024 seconds

Alumina Templates on Silicon Wafers with Hexagonally or Tetragonally Ordered Nanopore Arrays via Soft Lithography

  • Park, Man-Shik;Yu, Gui-Duk;Shin, Kyu-Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.83-89
    • /
    • 2012
  • Due to the potential importance and usefulness, usage of highly ordered nanoporous anodized aluminum oxide can be broadened in industry, when highly ordered anodized aluminum oxide can be placed on a substrate with controlled thickness. Here we report a facile route to highly ordered nanoporous alumina with the thickness of hundreds-of-nanometer on a silicon wafer substrate. Hexagonally or tetragonally ordered nanoporous alumina could be prepared by way of thermal imprinting, dry etching, and anodization. Adoption of reusable polymer soft molds enabled the control of the thickness of the highly ordered porous alumina. It also increased reproducibility of imprinting process and reduced the expense for mold production and pattern generation. As nanoporous alumina templates are mechanically and thermally stable, we expect that the simple and costeffective fabrication through our method would be highly applicable in electronics industry.

Diffusion study for chloride ions and water molecules in C-S-H gel in nano-scale using molecular dynamics: Case study of tobermorite

  • Zehtab, Behnam;Tarighat, Amir
    • Advances in concrete construction
    • /
    • v.4 no.4
    • /
    • pp.305-317
    • /
    • 2016
  • Porous materials such as concrete could be subjected to aggressive ions transport. Durability of cement paste is extremely depended on water and ions penetration into its interior sections. These ions transport could lead different damages depending on reactivity of ions, their concentrations and diffusion coefficients. In this paper, chloride diffusion process in cement hydrates is simulated at atomistic scale using molecular dynamics. Most important phase of cement hydrates is calcium silicate hydrate (C-S-H). Tobermorite, one of the most famous crystal analogues of C-S-H, is used as substrate in the simulation model. To conduct simulation, a nanopore is considered in the middle of simulation cell to place water molecules and aggressive ions. Different chloride salts are considered in models to find out which one is better for calculation of the transport properties. Diffusion coefficients of water molecules and chloride ions are calculated and validated with existing analytical and experimental works. There are relatively good agreements among simulation outputs and experimental results.

Epitaxial Growth of Polyurea Film by Molecular Layer Deposition

  • Choe, Seong-Eun;Gang, Eun-Ji;Lee, Jin-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.264.2-264.2
    • /
    • 2013
  • Molecular layer deposition (MLD) is sequential, self-limiting surface reaction to form conformal and ultrathin polymer film. This technique generally uses bifunctional precursors for stepwise sequential surface reaction and entirely organic polymer films. Also, in comparison with solution-based technique, because MLD is vapor-phase deposition based on ALD, it allows epitaxial growth of molecular layer on substrate and is especially good for surface reaction or coating of nanostructure such as nanopore, nanochannel, nanwire array and so on. In this study, polyurea film that consisted of phenylenediisocyanate and phenylenediamine was formed by MLD technique. In situ Fourier Transform Infrared (FTIR) measurement on high surface area SiO2 substrate was used to monitor the growth of polyurethane and polyurea film. Also, to investigate orientation of chemical bonding formed polymer film, plan-polarized grazing angle FTIR spectroscopy was used and it showed epitaxial growth and uniform orientation of chemical bones of polyurea films.

  • PDF

Storing Digital Information in Long-Read DNA

  • Ahn, TaeJin;Ban, Hamin;Park, Hyunsoo
    • Genomics & Informatics
    • /
    • v.16 no.4
    • /
    • pp.30.1-30.6
    • /
    • 2018
  • There is urgent need for effective and cost-efficient data storage, as the worldwide requirement for data storage is rapidly growing. DNA has introduced a new tool for storing digital information. Recent studies have successfully stored digital information, such as text and gif animation. Previous studies tackled technical hurdles due to errors from DNA synthesis and sequencing. Studies also have focused on a strategy that makes use of 100-150-bp read sizes in both synthesis and sequencing. In this paper, we a suggest novel data encoding/decoding scheme that makes use of long-read DNA (~1,000 bp). This enables accurate recovery of stored digital information with a smaller number of reads than the previous approach. Also, this approach reduces sequencing time.

Ongoing endeavors to detect mobilization of transposable elements

  • Lee, Yujeong;Ha, Una;Moon, Sungjin
    • BMB Reports
    • /
    • v.55 no.7
    • /
    • pp.305-315
    • /
    • 2022
  • Transposable elements (TEs) are DNA sequences capable of mobilization from one location to another in the genome. Since the discovery of 'Dissociation (Dc) locus' by Barbara McClintock in maize (1), mounting evidence in the era of genomics indicates that a significant fraction of most eukaryotic genomes is composed of TE sequences, involving in various aspects of biological processes such as development, physiology, diseases and evolution. Although technical advances in genomics have discovered numerous functional impacts of TE across species, our understanding of TEs is still ongoing process due to challenges resulted from complexity and abundance of TEs in the genome. In this mini-review, we briefly summarize biology of TEs and their impacts on the host genome, emphasizing importance of understanding TE landscape in the genome. Then, we introduce recent endeavors especially in vivo retrotransposition assays and long read sequencing technology for identifying de novo insertions/TE polymorphism, which will broaden our knowledge of extraordinary relationship between genomic cohabitants and their host.

A study on the Initial Nanopore Formation in the Calix Arene Based Porogen Templated Porous Thin Film (칼릭스아렌 포로젠을 이용한 다공성 박막의 초기 나노기공 형성과정에 관한 연구)

  • Kim, Do-Hun;Yim, Jin-Heong
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.669-675
    • /
    • 2011
  • Fourier Transform Infrared Spectroscopy and in-situ Position Annihilation Lifetime Spectroscopy(PALS) analysis of hybrid film, which consist of silsesquioxane(SSQ) and 4-tert-butyl calix[4]arene-O,O',O",O'"-tetraacetic acid tetraethyl ester(CA[4]) have been investigated in order to understand initial formation of nanopore in the next generation porous low-k dielectrics(k < 2.0). SSQ/CA[4] can provide effective homogeneous thin film having porous structure. The porogen decomposition behavior were completely different in the two kinds of SSQ/CA[4] based hybrid film (i.e. SSQ/CA[4] 10 and SSQ/CA[4] 20%). Relatively small pores(1.5 nm) come from dispersion of uni-molecular CA[4] in the SSQ matrix have been generated at $300^{\circ}C$, while mesopores(2.5~3.0 nm) induced from self assembled CA[4] have been generated at $250^{\circ}C$. It might be due to highly interconnected structure of SSQ/CA[4] 20% hybrid thin film resulting in facile evacuating of decomposed fragment of CA[4] molecule.

Influence of Functionalization of Silica with Ionic Liquid on Ethylene Polymerization Behavior of Supported Metallocene (실리카의 이온성 액체 기능화가 메탈로센 담지촉매의 에틸렌 중합 거동에 미치는 영향)

  • Lee, Jeong Suk;Lee, Chang Il;Ko, Young Soo
    • Applied Chemistry for Engineering
    • /
    • v.27 no.1
    • /
    • pp.86-91
    • /
    • 2016
  • Three amorphous silicas and SBA-15 were employed as supports, which were capable of confining ionic liquid (IL) and metallocene in the nanopore. Ionic liquid functionalized silica was prepared by the interaction between the chloride anions of 1,3-bis(cyanomethyl)imidazolium chloride and the surface OH groups. Metallocene and methylaluminoxane (MAO) were subsequently immobilized on the ionic liquid functionalized silica for ethylene polymerization. The metallocene supported on ionic liquid functionalized XPO-2412 and XPO-2410 having a larger pore diameter compared to SBA-15 showed higher activity than that of using supported catalyst without ionic liquid functionalization. However, the activity of metallocene supported on SBA-15 decreased after ionic liquid functionalization, suggesting that the diffusion of ethylene monomer and cocatalyst to the active site of nanopore was restricted during ethylene polymerization. This could be resulted from significant reduction of the pore diameter due to the immobilization of ionic liquid and $(n-BuCp)_2ZrCl_2$ and MAO. The effect on polymerization activity in accordance with the concentration of hydroxyl groups on the surface was also investigated. The polymerization activity increased as the concentration of hydroxyl groups on amorphous silica increased. The polymerization activities of metallocene supported on silica showed the similar trend after ionic liquid functionalization.

Genomic epidemiology for microbial evolutionary studies and the use of Oxford Nanopore sequencing technology (미생물 진화 연구를 위한 유전체 역학과 옥스포드 나노포어 염기서열분석 기술의 활용)

  • Choi, Sang Chul
    • Korean Journal of Microbiology
    • /
    • v.54 no.3
    • /
    • pp.188-199
    • /
    • 2018
  • Genomic epidemiology exploits various basic microbial research areas. High-throughput sequencing technologies dramatically have been expanding the number of microbial genome sequences available. Abundant genomic data provide an opportunity to perform strain typing more effectively, helping identify microbial species and strains at a higher resolution than ever before. Genomic epidemiology needs to find antimicrobial resistance genes in addition to standard genome annotations. Strain typing and antimicrobial resistance gene finding are static aspects of genomic epidemiology. Finding which hosts infected which other hosts requires the inference of transient transmission routes among infected hosts. The strain typing, antimicrobial resistance gene finding, and transmission tree inference would allow for better surveillance of microbial infectious diseases, which is one of the ultimate goals of genomic epidemiology. Among several high-throughput sequencing technologies, genomic epidemiology will benefit from the more portability and shorter sequencing time of the Oxford Nanopore Technologies's MinION, the third-generation sequencing technology. Here, this study reviewed computational methods for quantifying antimicrobial resistance genes and inferring disease transmission trees. In addition, the MinION's applications to genomic epidemiology were discussed.

Polyurea Cross-linked Silica Aerogel with Improved Mechanical Strength by Applying a Precursor Having a Plurality of Amino Groups (복수의 아민기를 가지는 전구체를 적용하여 기계적 강도를 향상시킨 폴리우레아 가교 실리카 에어로겔)

  • Lee, Wonjun;Kim, Taehee;Choi, Haryeong;Kim, Jiseung;Lee, Hong-Sub
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.4
    • /
    • pp.15-20
    • /
    • 2022
  • Aerogel is a material having a nanopore structure based on a high porosity. Due to this high porosity, it has excellent properties not found in conventional materials, but its application has been limited due to low mechanical strength. Therefore, to improve the mechanical strength of the aerogel, polyurea crosslinking was introduced and a precursor having an amine group essential for polyurea polymer formation was selected to synthesize a polyurea crosslinked aerogel composite. In addition, the crosslinking of polyurea was adjusted according to the number of amine groups present in aminosilane. It was confirmed through various analyses that the nanopore structure of the aerogel was maintained to have mesopores. The aerogel thus formed was able to improve the mechanical strength by about two times, and it was confirmed through field emission scanning electron microscope analysis that a one-dimensional polymer was formed on the silica aerogel surface through the introduction of ethylene diamine. The one-dimensional polymer thus formed has improved mechanical properties, resulting in securing an elastic modulus of about 2.66 MPa.

Synthesis of Nanoporous Structured SnO2 and its Photocatalytic Ability for Bisphenol A Destruction

  • Kim, Ji-Eun;Lee, Jun-Sung;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1715-1720
    • /
    • 2011
  • Nanoporous structured tin dioxide ($SnO_2$) is characterized and its application in the photocatalytic destruction of endocrine, Bisphenol A, is examined. Transmission electron microscopy (TEM) reveals irregularly shaped nanopores of size 2.0-4.5 nm. This corresponds to the result of an average nanopore distribution of 4.5 nm, as determined by Barret-Joyner-Halenda (BJH) plot from the isotherm curve. The photoluminescence (PL) curve, corresponding to the recombination between electron and hole, largely decreases in the $TiO_2$/nanoporous $SnO_2$ composite. Finally, a synergy effect between $TiO_2$ and porous $SnO_2$ is exhibited in photocatalysis: the photocatalytic destruction of Bisphenol A is improved by combining the nanoporous structured $SnO_2$ with $TiO_2$, and 75% decomposition of 10.0 ppm of Bisphenol A is achieved after 24 h.