Browse > Article
http://dx.doi.org/10.7845/kjm.2018.8045

Genomic epidemiology for microbial evolutionary studies and the use of Oxford Nanopore sequencing technology  

Choi, Sang Chul (Department of Biotechnology, Sungshin Women's University)
Publication Information
Korean Journal of Microbiology / v.54, no.3, 2018 , pp. 188-199 More about this Journal
Abstract
Genomic epidemiology exploits various basic microbial research areas. High-throughput sequencing technologies dramatically have been expanding the number of microbial genome sequences available. Abundant genomic data provide an opportunity to perform strain typing more effectively, helping identify microbial species and strains at a higher resolution than ever before. Genomic epidemiology needs to find antimicrobial resistance genes in addition to standard genome annotations. Strain typing and antimicrobial resistance gene finding are static aspects of genomic epidemiology. Finding which hosts infected which other hosts requires the inference of transient transmission routes among infected hosts. The strain typing, antimicrobial resistance gene finding, and transmission tree inference would allow for better surveillance of microbial infectious diseases, which is one of the ultimate goals of genomic epidemiology. Among several high-throughput sequencing technologies, genomic epidemiology will benefit from the more portability and shorter sequencing time of the Oxford Nanopore Technologies's MinION, the third-generation sequencing technology. Here, this study reviewed computational methods for quantifying antimicrobial resistance genes and inferring disease transmission trees. In addition, the MinION's applications to genomic epidemiology were discussed.
Keywords
antimicrobial resistance; infectious disease outbreaks; public health; surveillance; transmission tree inference;
Citations & Related Records
연도 인용수 순위
  • Reference
1 de Man TJB and Limbago BM. 2016. SSTAR, a stand-alone easy-to-use antimicrobial resistance gene predictor. mSphere 1, e00050-15.
2 Deschamps S, Mudge J, Cameron C, Ramaraj T, Anand A, Fengler K, Hayes K, Llaca V, Jones TJ, and May G. 2016. Characterization, correction and de novo assembly of an Oxford Nanopore genomic dataset from Agrobacterium tumefaciens. Sci. Rep. 6, 28625.   DOI
3 Didelot X, Fraser C, Gardy J, and Colijn C. 2017. Genomic infectious disease epidemiology in partially sampled and ongoing outbreaks. Mol. Biol. Evol. 34, 997-1007.
4 Didelot X, Gardy J, and Colijn C. 2014. Bayesian inference of infectious disease transmission from whole-genome sequence data. Mol. Biol. Evol. 31, 1869-1879.   DOI
5 Kerkhof LJ, Dillon KP, Haggblom MM, and McGuinness LR. 2017. Profiling bacterial communities by MinION sequencing of ribosomal operons. Microbiome 5, 116.   DOI
6 Kilbourne ED. 1973. The molecular epidemiology of influenza. J. Infect. Dis. 127, 478-487.   DOI
7 Land M, Hauser L, Jun SR, Nookaew I, Leuze MR, Ahn TH, Karpinets T, Lund O, Kora G, Wassenaar T, et al. 2015. Insights from 20 years of bacterial genome sequencing. Funct. Integr. Genomics 15, 141-161.   DOI
8 Kilianski A, Roth PA, Liem AT, Hill JM, Willis KL, Rossmaier RD, Marinich AV, Maughan MN, Karavis MA, Kuhn JH, et al. 2016. Use of unamplified RNA/cDNA-hybrid nanopore sequencing for rapid detection and characterization of RNA viruses. Emerg. Infect. Dis. 22, 1448-1451.   DOI
9 Klemm E and Dougan G. 2016. Advances in understanding bacterial pathogenesis gained from whole-genome sequencing and phylogenetics. Cell Host Microbe 19, 599-610.   DOI
10 Klinkenberg D, Backer JA, Didelot X, Colijn C, and Wallinga J. 2017. Simultaneous inference of phylogenetic and transmission trees in infectious disease outbreaks. PLoS Comput. Biol. 13, e1005495.   DOI
11 Lapierre P and Gogarten JP. 2009. Estimating the size of the bacterial pan-genome. Trends Genet. 25, 107-110.   DOI
12 Lau MSY, Marion G, Streftaris G, and Gibson G. 2015. A systematic Bayesian integration of epidemiological and genetic data. PLoS Comput. Biol. 11, e1004633.   DOI
13 Loman NJ, Quick J, and Simpson JT. 2015. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat. Methods 12, 733-735.   DOI
14 Maiden MCJ, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q, Zhou J, Zurth K, Caugant DA, et al. 1998. Multilocus sequence typing: A portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl. Acad. Sci. USA 95, 3140-3145.   DOI
15 Maiden MCJ, van Rensburg MJJ, Bray JE, Earle SG, Ford SA, Jolley KA, and McCarthy ND. 2013. MLST revisited: The gene-by-gene approach to bacterial genomics. Nat. Rev. Microbiol. 11, 728-736.   DOI
16 George S, Pankhurst L, Hubbard A, Votintseva A, Stoesser N, Sheppard AE, Mathers A, Norris R, Navickaite I, Eaton C, et al. 2017. Resolving plasmid structures in Enterobacteriaceae using the MinION nanopore sequencer: Assessment of MinION and MinION/Illumina hybrid data assembly approaches. Microb. Genom. 3, e000118.
17 Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, et al. 2009. Real-time DNA sequencing from single polymerase molecules. Science 323, 133-138.   DOI
18 Eybpoosh S, Haghdoost AA, Mostafavi E, Bahrampour A, Azadmanesh K, and Zolala F. 2017. Molecular epidemiology of infectious diseases. Electron. Physician 9, 5149-5158.   DOI
19 Feil EJ, Li BC, Aanensen DM, Hanage WP, and Spratt BG. 2004. eBURST: Inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J. Bacteriol. 186, 1518-1530.   DOI
20 Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM, et al. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496-512.   DOI
21 Gong L, Huang YT, Wong CH, Chao WC, Wu ZY, Wei CL, and Liu PY. 2018. Culture-independent analysis of liver abscess using nanopore sequencing. PLoS One 13, e0190853.   DOI
22 Goordial J, Altshuler I, Hindson K, Chan-Yam K, Marcolefas E, and Whyte LG. 2017. In situ field sequencing and life detection in remote ($79^{\circ}26) Canadian high arctic permafrost ice wedge microbial communities. Front. Microbiol. 8, 2594.   DOI
23 Gorrie CL, Mirceta M, Wick RR, Judd LM, Wyres KL, Thomson NR, Strugnell RA, Pratt NF, Garlick JS, Watson KM, et al. 2018. Antimicrobial resistant Klebsiella pneumoniae carriage and infection in specialized geriatric care wards linked to acquisition in the referring hospital. Clin. Infect. Dis. 11, 589.
24 Mollentze N, Nel LH, Townsend S, le Roux K, Hampson K, Haydon DT, and Soubeyrand S. 2014. A Bayesian approach for inferring the dynamics of partially observed endemic infectious diseases from space-time-genetic data. Proc. Biol. Sci. 281, 20133251-20133251.   DOI
25 Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, et al. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376-380.   DOI
26 McArthur AG and Tsang KK. 2017. Antimicrobial resistance surveillance in the genomic age. Ann. N. Y. Acad. Sci. 1388, 78-91.   DOI
27 Metzker ML. 2010. Sequencing technologies - the next generation. Nat. Rev. Genet. 11, 31-46.   DOI
28 Morelli MJ, Thebaud G, Chadoeuf J, King DP, Haydon DT, and Soubeyrand S. 2012. A Bayesian inference framework to reconstruct transmission trees using epidemiological and genetic data. PLoS Comput. Biol. 8, e1002768.   DOI
29 Mukherjee S, Stamatis D, Bertsch J, Ovchinnikova G, Verezemska O, Isbandi M, Thomas AD, Ali R, Sharma K, Kyrpides NC, et al. 2017. Genomes online database (GOLD) v.6: Data updates and feature enhancements. Nucl. Acids Res. 45, D446-D456.   DOI
30 Nakano M, Komatsu J, Matsuura SI, Takashima K, Katsura S, and Mizuno A. 2003. Single-molecule PCR using water-in-oil emulsion. J. Biotechnol. 102, 117-124.   DOI
31 Numminen E, Chewapreecha C, Siren J, Turner C, Turner P, Bentley SD, and Corander J. 2014. Two-phase importance sampling for inference about transmission trees. Proc. Biol. Sci. 281, 20141324-20141324.   DOI
32 Romero-Severson E, Skar H, Bulla I, Albert J, and Leitner T. 2014. Timing and order of transmission events is not directly reflected in a pathogen phylogeny. Mol. Biol. Evol. 31, 2472-2482.   DOI
33 Pritchard JK, Stephens M, and Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics 155, 945-959.
34 Alm RA, Ling LS, Moir DT, King BL, Brown ED, Doig PC, Smith DR, Noonan B, Guild BC, de Jonge BL, et al. 1999. Genomicsequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397, 176-180.   DOI
35 Quick J, Ashton P, Calus S, Chatt C, Gossain S, Hawker J, Nair S, Neal K, Nye K, Peters T, et al. 2015. Rapid draft sequencing and real-time nanopore sequencing in a hospital outbreak of Salmonella. Genome Biol. 16, 7.   DOI
36 Quick J, Grubaugh ND, Pullan ST, Claro IM, Smith AD, Gangavarapu K, Oliveira G, Robles-Sikisaka R, Rogers TF, Beutler NA, et al. 2017. Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples. Nat. Protoc. 12, 1261-1276.   DOI
37 Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, Bore JA, Koundouno R, Dudas G, Mikhail A, et al. 2016. Real-time, portable genome sequencing for Ebola surveillance. Nature 530, 228-232.   DOI
38 Rames E and Macdonald J. 2018. Evaluation of MinION nanopore sequencing for rapid enterovirus genotyping. Virus Res. 252, 8-12.   DOI
39 Risse J, Thomson M, Patrick S, Blakely G, Koutsovoulos G, Blaxter M, and Watson M. 2015. A single chromosome assembly of Bacteroides fragilis strain BE1 from Illumina and MinION nanopore sequencing data. GigaScience 4, 60.   DOI
40 Rowe W, Baker KS, Verner-Jeffreys D, Baker-Austin C, Ryan JJ, Maskell D, and Pearce G. 2015. Search engine for antimicrobial resistance: A cloud compatible pipeline and web interface for rapidly detecting antimicrobial resistance genes directly from sequence data. PLoS One 10, e0133492.   DOI
41 Russell JA, Campos B, Stone J, Blosser EM, Burkett-Cadena N, and Jacobs JL. 2018. Unbiased strain-typing of arbovirus directly from mosquitoes using nanopore sequencing: A field-forward biosurveillance protocol. Sci. Rep. 8, 5417.   DOI
42 Guthrie JL and Gardy JL. 2017. A brief primer on genomic epidemiology: Lessons learned from Mycobacterium tuberculosis. Ann. N. Y. Acad. Sci. 1388, 59-77.   DOI
43 Sanger F, Nicklen S, and Coulson AR. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463-5467.   DOI
44 Schmidt K, Mwaigwisya S, Crossman LC, Doumith M, Munroe D, Pires C, Khan AM, Woodford N, Saunders NJ, Wain J, et al. 2017. Identification of bacterial pathogens and antimicrobial resistance directly from clinical urines by nanopore-based metagenomic sequencing. J. Antimicrob. Chemother. 72, 104-114.   DOI
45 Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiss S, Sittka A, Chabas S, Reiche K, Hackermuller J, Reinhardt R, et al. 2010. The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464, 250-255.   DOI
46 Green ED. 2001. Strategies for the systematic sequencing of complex genomes. Nat. Rev. Genet. 2, 573-583.
47 Grenfell BT, Pybus OG, Gog JR, Wood JLN, Daly JM, Mumford JA, and Holmes EC. 2004. Unifying the epidemiological and evolutionary dynamics of pathogens. Science 303, 327-332.   DOI
48 Staden R. 1979. A strategy of DNA sequencing employing computer programs. Nucleic Acids Res. 6, 2601-2610.   DOI
49 Shendure J, Porreca GJ, Reppas NB, Lin X, McCutcheon JP, Rosenbaum AM, Wang MD, Zhang K, Mitra RD, and Church GM. 2005. Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309, 1728-1732.   DOI
50 Simner PJ, Antar AAR, Hao S, Gurtowski J, Tamma PD, Rock C, Opene BNA, Tekle T, Carroll KC, Schatz MC, et al. 2018. Antibiotic pressure on the acquisition and loss of antibiotic resistance genes in Klebsiella pneumoniae. J. Antimicrob. Chemother. 37, 1288.
51 Steiner A, Stucki D, Coscolla M, Borrell S, and Gagneux S. 2014. KvarQ: Targeted and direct variant calling from fastq reads of bacterial genomes. BMC Genomics 15, 881.   DOI
52 Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, and Ostell J. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44, 6614-6624.   DOI
53 Tettelin H, Riley D, Cattuto C, and Medini D. 2008. Comparative genomics: The bacterial pan-genome. Curr. Opin. Microbiol. 11, 472-477.   DOI
54 Heather JM and Chain B. 2016. The sequence of sequencers: The history of sequencing DNA. Genomics 107, 1-8.   DOI
55 Ashton PM, Nair S, Dallman T, Rubino S, Rabsch W, Mwaigwisya S, Wain J, and O'Grady J. 2015. MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nat. Biotechnol. 33, 296-300.   DOI
56 Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, et al. 2008. The RAST server: Rapid annotations using subsystems technology. BMC Genomics 9, 75.   DOI
57 Bayliss SC, Hunt VL, Yokoyama M, Thorpe HA, and Feil EJ. 2017. The use of Oxford Nanopore native barcoding for complete genome assembly. GigaScience 6, 1-6.
58 Hall M, Woolhouse M, and Rambaut A. 2015. Epidemic reconstruction in a phylogenetics framework: Transmission trees as partitions of the node set. PLoS Comput. Biol. 11, e1004613.   DOI
59 Hawkey J, Ascher DB, Judd LM, Wick RR, Kostoulias X, Cleland H, Spelman DW, Padiglione A, Peleg AY, and Holt KE. 2018. Evolution of carbapenem resistance in Acinetobacter baumannii during a prolonged infection. Microb. Genom. 4, 148.
60 Hyeon JY, Li S, Mann DA, Zhang S, Li Z, Chen Y, and Deng X. 2017. Quasi-metagenomics and realtime sequencing aided detection and subtyping of Salmonella enterica from food samples. Appl. Environ. Microbiol. 84, e02340-17.
61 Imai K, Tarumoto N, Runtuwene LR, Sakai J, Hayashida K, Eshita Y, Maeda R, Tuda J, Ohno H, Murakami T, et al. 2018. An innovative diagnostic technology for the codon mutation C580Y in kelch13 of Plasmodium falciparum with MinION nanopore sequencer. Malar. J. 17, 217.   DOI
62 Inouye M, Dashnow H, Schultz MB, Zobel J, and Holt KE. 2014. SRST2: Rapid genomic surveillance for public health and hospital microbiology labs. Genome Med. 6, 90.   DOI
63 Wick RR, Schultz MB, Zobel J, and Holt KE. 2015. Bandage: Interactive visualization of de novo genome assemblies. Bioinformatics 31, 3350-3352.   DOI
64 Traynor BJ. 2009. The era of genomic epidemiology. Neuroepidemiology 33, 276-279.   DOI
65 Votintseva AA, Bradley P, Pankhurst L, del Ojo Elias C, Loose M, Nilgiriwala K, Chatterjee A, Smith EG, Sanderson N, Walker TM, et al. 2017. Same-day diagnostic and surveillance data for tuberculosis via whole-genome sequencing of direct respiratory samples. J. Clin. Microbiol. 55, 1285-1298.   DOI
66 Wick RR, Judd LM, Gorrie CL, and Holt KE. 2017. Completing bacterial genome assemblies with multiplex MinION sequencing. Microb. Genom. 3, e000132.
67 Worby CJ, Lipsitch M, and Hanage WP. 2014. Within-host bacterial diversity hinders accurate reconstruction of transmission networks from genomic distance data. PLoS Comput. Biol. 10, e1003549.   DOI
68 Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ, et al. 2009. A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 462, 1056-1060.   DOI
69 Xia Y, Li AD, Deng Y, Jiang XT, Li LG, and Zhang T. 2017. MinION nanopore sequencing enables correlation between resistome phenotype and genotype of coliform bacteria in municipal sewage. Front. Microbiol. 8, 2105.   DOI
70 Yin X, Jiang XT, Chai B, Li L, Yang Y, Cole JR, Tiedje JM, and Zhang T. 2018. ARGs-OAP v2.0 with an expanded SARG database and hidden Markov Models for enhancement characterization and quantification of antibiotic resistance genes in environmental metagenomes. Bioinformatics 535, 435.
71 Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, et al. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10, 563-569.   DOI
72 You Y, Kou Y, Niu L, Jia Q, Liu Y, Davies MR, Walker MJ, Zhu J, and Zhang J. 2018. Complete genome sequence of a Streptococcus pyogenes serotype M12 scarlet fever outbreak isolate from China, compiled using Oxford Nanopore and Illumina sequencing. Genome Announc. 6, e00389-18.
73 Beaton A, Lood C, Cunningham-Oakes E, MacFadyen A, Mullins AJ, Bestawy WE, Botelho J, Chevalier S, Coleman S, Dalzell C, et al. 2018. Community-led comparative genomic and phenotypic analysis of the aquaculture pathogen Pseudomonas baetica a390t sequenced by ion semiconductor and nanopore technologies. FEMS Microbiol. Lett. 365, 103.
74 Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR, et al. 2008. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53-59.   DOI
75 Benitez-Paez A, Portune KJ, and Sanz Y. 2016. Species-level resolution of 16S rRNA gene amplicons sequenced through the $MinION^{TM}$ portable nanopore sequencer. GigaScience 5, 4.   DOI
76 Bradley P, Gordon NC, Walker TM, Dunn L, Heys S, Huang B, Earle S, Pankhurst LJ, Anson L, de Cesare M, et al. 2015. Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nat. Commun. 6, 1761.
77 Cottam EM, Thebaud G, Wadsworth J, Gloster J, Mansley L, Paton DJ, King DP, and Haydon DT. 2008. Integrating genetic and epidemiological data to determine transmission pathways of foot-and-mouth disease virus. Proc. R. Soc. B 275, 887-895.   DOI
78 Ypma RJF, van Ballegooijen WM, and Wallinga J. 2013. Relating phylogenetic trees to transmission trees of infectious disease outbreaks. Genetics 195, 1055-1062.   DOI
79 Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, and Larsen MV. 2012. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 67, 2640-2644.   DOI
80 Coll F, McNerney R, Preston MD, Guerra-Assuncao JA, Warry A, Hill-Cawthorne G, Mallard K, Nair M, Miranda A, Alves A, et al. 2015. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences. Genome Med. 7, 321.
81 Deamer D, Akeson M, and Branton D. 2016. Three decades of nanopore sequencing. Nat. Biotechnol. 34, 518-524.   DOI
82 De Maio N, Wu CH, O'Reilly KM, and Wilson D. 2015. New routes to phylogeography: A Bayesian structured coalescent approximation. PLoS Genet. 11, e1005421.   DOI
83 De Maio N, Wu CH, and Wilson DJ. 2016. SCOTTI: Efficient reconstruction of transmission within outbreaks with the structured coalescent. PLoS Comput. Biol. 12, e1005130.   DOI
84 Jolley KA, Bliss CM, Bennett JS, Bratcher HB, Brehony C, Colles FM, Wimalarathna H, Harrison OB, Sheppard SK, Cody AJ, et al. 2012. Ribosomal multilocus sequence typing: Universal characterization of bacteria from domain to strain. Microbiology 158, 1005-1015.   DOI
85 Iwai H, Kato-Miyazawa M, Kirikae T, and Miyoshi-Akiyama T. 2015. CASTB (the comprehensive analysis server for the Mycobacterium tuberculosis complex): A publicly accessible web server for epidemiological analyses, drug-resistance prediction and phylogenetic comparison of clinical isolates. Tuberculosis 95, 843-844.   DOI
86 Jacob F and Monod J. 1961. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3, 318-356.   DOI
87 Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, Lago BA, Dave BM, Pereira S, Sharma AN, et al. 2017. CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 45, D566-D573.   DOI
88 Jombart T, Cori A, Didelot X, Cauchemez S, Fraser C, and Ferguson N. 2014. Bayesian reconstruction of disease outbreaks by combining epidemiologic and genomic data. PLoS Comput. Biol. 10, e1003457.   DOI
89 Judge K, Hunt M, Reuter S, Tracey A, Quail MA, Parkhill J, and Peacock SJ. 2016. Comparison of bacterial genome assembly software for MinION data and their applicability to medical microbiology. Microb. Genom. 2, e000085.