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Genomic epidemiology exploits various basic microbial research 

areas. High-throughput sequencing technologies dramatically 

have been expanding the number of microbial genome sequences 

available. Abundant genomic data provide an opportunity to 

perform strain typing more effectively, helping identify microbial 

species and strains at a higher resolution than ever before. 

Genomic epidemiology needs to find antimicrobial resistance 

genes in addition to standard genome annotations. Strain typing 

and antimicrobial resistance gene finding are static aspects of 

genomic epidemiology. Finding which hosts infected which 

other hosts requires the inference of transient transmission 

routes among infected hosts. The strain typing, antimicrobial 

resistance gene finding, and transmission tree inference would 

allow for better surveillance of microbial infectious diseases, 

which is one of the ultimate goals of genomic epidemiology. 

Among several high-throughput sequencing technologies, genomic 

epidemiology will benefit from the more portability and shorter 

sequencing time of the Oxford Nanopore Technologies’s MinION, 

the third-generation sequencing technology. Here, this study 

reviewed computational methods for quantifying antimicrobial 

resistance genes and inferring disease transmission trees. In 

addition, the MinION’s applications to genomic epidemiology 

were discussed. 

Keywords: antimicrobial resistance, infectious disease outbreaks, 

public health, surveillance, transmission tree inference

Microbial genomics is ushering in an era of genomic epidemio-

logy (Traynor, 2009), employing the whole-genome sequencing 

(Metzker, 2010) in traditional molecular epidemiology (Eybpoosh 

et al., 2017) studies. Fleischmann et al. (1995) triggered the 

start of microbial genomics by sequencing the complete bacterial 

genome for Haemophilus influenzae. Thousands of complete 

microbial genomes have been available since then (Mukherjee 

et al., 2017). Wu et al. (2009) made efforts to expand taxon 

sampling coverage in an attempt of inferring a complete 

microbial phylogeny. These efforts even increased the number 

of microbial genome sequences. Earlier studies in microbial 

genomics documented genomes using gene prediction tools on 

a single genome basis (Alm et al., 1999). Comparative genomics 

changed the direction of research into examining a collection of 

genomes (Tettelin et al., 2008). Studies on some microbial 

genomes led to the analysis of microbial pan-genome, consisting 

of core and accessory genes. Core genes under strong negative 

selective pressure are often passed on vertically, not changing 

much over evolutionary time. Accessory genes are more likely 
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Fig. 1. The diagrammatic flow of genomic epidemiology studies. The workflow starts in the top left corner with epidemiological sampling. Anonymization 

of sampling data, if necessary, would protect the privacy of individuals under surveillance. The sampled specimen may undergo experimental procedures for 

phenotypic, genotypic, or epidemiological evidence. Genetic and some of the epidemiological evidence should be stored at the central public databases for 

further analyses. Sequencing techniques allow for microbial strain typing and antimicrobial resistance gene finding. Transmission tree inference for outbreak 

reconstruction would be suggested from genetic and epidemiological data. Public health agencies would utilize diagnosis, resistance typing, and outbreak 

reconstruction for making a better policy of controlling and limiting the dispersal of infectious diseases.

to be horizontally transferable, allowing microbial organisms 

to adapt to changing environments (Lapierre and Gogarten, 

2009). Microbial genomes consist of operons, each holding a 

static set of functionally related genes as a unit of transcription 

(Jacob and Monod, 1961). Microbial transcriptome, later, ex-

hibited dynamic RNA expression, varying in different culture 

conditions. For instance, Sharma et al. (2010) employed a 

massively parallel differential RNA sequencing, showing that 

Helicobacter pylori displayed diverse repertoires of the micro-

bial transcriptome. The microbial transcriptome explained the 

complexity of alternative splicing in eukaryotes. Thus far, 

high-throughput sequencing technologies helped document 

microbial genomes and transcriptomes in many species, mostly 

aiming at better understanding microbial pathogenesis (Klemm 

and Dougan, 2016). The past several years has seen that the 

earlier basic research on the catalog of microbial genomes and 

transcriptomes are transitioning to a more practical application 

to molecular epidemiology (Guthrie and Gardy, 2017).

Molecular epidemiology: strain identification

Traditional molecular epidemiology researchers apply molecular 

biology techniques to epidemiology studies for disease prevention 
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and management (Kilbourne, 1973). They track the development 

of infectious diseases and identify the causes of such diseases to 

control and oversee the spread of the diseases (Fig. 1). Finding 

out the causes of microbial infectious diseases amounts to iden-

tifying the species or strains of such microorganisms geno-

typically or phenotypically. First, phenotypic identification of 

microorganisms often depends on examining blood serum, the 

method of which varies among different microbial species or 

strains. Phenotypic identification methods are often instrumental 

in diagnoses, and not easily yet transferrable for comparisons 

among public health agencies because phenotypic measurements 

are not easy to compare one with another. Second, traditional 

genotyping techniques include pulsed-field gel electrophoresis 

(PFGE), multi-locus enzyme electrophoresis (MLEE), and multi- 

locus sequence typing (MLST), to name a few (Maiden, 1998). 

They all use the variation of microbial sequences to discriminate 

differences in genotypes of microorganisms. While PFGE often 

was valuable for discriminating between minute variations and 

identifying strains occurring in a local area, MLEE was better 

at clustering closely related strains (Maiden, 1998). MLST 

technique uses only several genes that exist universally in 

bacteria to genotype strains, having gained popularity among 

population genetics studies to understand the distribution of 

infectious diseases caused by pathogens. The last decade has 

seen the development of MLST’s derivatives, resolving the 

unfortunate situation of the use of a fraction of a total genome. 

The development includes ribosomal MLST (Jolley et al., 2012), 

core-genome MLST, and whole-genome MLST (Maiden et al., 

2013). The further development of MLST expanded genotyping 

widths, allowing for higher resolution of microbial species 

delimitation. Applying a statistical approach to genotype data, 

one can learn of the population structure of individual organisms 

(Pritchard et al., 2000). Similarly, MLST genotype data with a 

clustering method such as eBURST grouping were instrumental 

in relating bacterial isolates for evolutionary investigation (Feil 

et al., 2004). Although MLST and its derivatives suggested 

better resolution in typing bacterial strains, they would use still 

a gene-by-gene comparison. Thus, they often failed to make 

full use of the totality of sequence data by the whole genome 

sequencing. 

High-throughput DNA sequencing

DNA sequencing technologies have undergone a few genera-

tions (Heather and Chain, 2016), each of which evolved micro-

bial genome sequencing. After the publication of the chain 

termination sequencing (Sanger et al., 1977), researchers made 

efforts to mechanically parallelize the improved Sanger sequencing 

(Green, 2001). The genome sequencing of the free-living organism 

(Fleischmann et al., 1995) realized the earlier idea of shotgun 

sequencing (Staden, 1979). Pyrosequencing technology by 

Roche 454 heralded a major change in sequencing technologies, 

popularizing the term of next-generation sequencing (NGS) 

(Margulies et al., 2005). The second-generation sequencing 

technologies included a sequencing-by-ligation method called 

SOLiD (Shendure et al., 2005) and a sequencing-on-bead-via- 

emulsion PCR method called Ion Torrent sequencing (Nakano 

et al., 2003). Illumina sequencing has been dominating the 

DNA sequencing market share using the so-called sequencing- 

by-synthesis method (Bentley et al., 2008). Before Illumina 

sequencing, hundreds of bacterial genomes existed (Land et 

al., 2015). Since the drop in sequencing cost in 2007, the 

second-generation sequencing has increased the number of 

bacterial genome sequences up to tens of thousands. Notably, it 

was because of a surge of metagenomic projects in the last 

decade (Land et al., 2015). The third-generation sequencing 

technologies read DNA nucleotides at the single-molecule 

level. Two technologies of third-generation sequencing included 

single molecule real-time sequencing by Pacific Bioscience 

(Eid et al., 2009), and the Oxford Nanopore Technologies’s 

(ONT) MinION (Deamer et al., 2016). These third-generation 

sequencers would produce longer read sequences, facilitating 

finishing microbial genomes (Chin et al., 2013; Wick et al., 

2017). The development of high-throughput sequencing allowed 

molecular epidemiology to gain access readily to microbial 

genomes, ushering in the era of genomic epidemiology. 

Genomic epidemiology: antimicrobial resistance genes

Genomic epidemiology studies call for genome annotations 

that feature epidemiologically informative microbial types, 

including strain typing and antimicrobial resistant gene finding 

(Fig. 1). Genomic data analysis begins with annotating genome 

sequences with the locations and descriptions of genes. Many 
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efforts have been made to develop prokaryotic genome anno-

tation methods despite the much simpler genomes of prokaryotic 

organisms compared with eukaryotic ones. For instance, NCBI 

Prokaryotic Genome Automatic Annotation Pipeline (PGAAP) 

developed in 2005 has allowed users to simultaneously deposit 

and annotate a prokaryotic genome sequence (Tatusova et al., 

2016). The Rapid Annotations using Subsystems Technology 

(RAST) having started as a web-based service in 2007 annotates 

functional genes based on manually curated protein family 

libraries of subsystems (Aziz et al., 2008). As these general- 

purpose genome annotation tools hinge on experimental bio-

logical evidence, molecular epidemiological features prediction 

tools need datasets serving as experimentally corroborated 

evidence. McArthur and Tsang (2017) reported a detailed review 

of molecular epidemiological databases for antimicrobial resistance 

surveillance. This part discusses key features of computational 

tools for quantifying antimicrobial resistance genes. Before that, 

one NCBI’s database worth mentioning is Bacterial Antimicrobial 

Resistance Reference Gene Database (NCBI BioProject Accession 

PRJNA313047. Retrieved 2018, June 10. from https://www. 

ncbi.nlm.nih.gov/bioproject/PRJNA313047), allowing access to 

DNA and protein sequences involved in antimicrobial resistance 

genes. Other databases, e.g., Resfinder (Zankari et al., 2012) 

and the Comprehensive Antimicrobial Resistance Database 

(CARD) (Jia et al., 2017), contributed to some of the NCBI’s 

antimicrobial resistance sequence datasets (see more contributors’ 

references in the BioProject PRJNA313047). The different 

approaches used by computational tools for predicting anti-

microbial resistance genes are as follow. NCBI’s AMRFinder, 

employed by the NCBI Pathogen Detection pipeline (NCBI’s 

Pathogen Detection. Retrieved 2018, June 10. from https:// 

www.ncbi.nlm.nih.gov/pathogens/), uses the Bacterial Anti-

microbial Resistance Reference Gene Database to predict 

antimicrobial resistant genes (NCBI’s AMRFinder. Retrieved 

2018, June 10. from https://www.ncbi.nlm.nih.gov/pathogens/ 

antimicrobial-resistance/AMRFinder/). ARGs-OAP along with 

Structured Antibiotic Resistance Genes (SARG) database uses 

hidden Markov models to quantify antibiotic resistance genes 

in metagenomic data (Yin et al., 2018). ResFinder (Zankari 

et al., 2012) and Sequence Search Tool for Antimicrobial 

Resistance (SSTAR) (de Man and Limbago, 2016) use NCBI’s 

BLAST search for antimicrobial resistance genes. KvarQ, 

provided as a graphical and command-line user interface, 

mines short read sequence data for drug resistance mutations 

without reference-based genome mapping or genome assembly 

(Steiner et al., 2014). Similarly, Short Read Sequence Typing 

(SRST2) uses a read mapping technique to determine the types 

of short read sequences in the MLST fashion (Inouye et al., 

2014). Rather than devising a new computational technique, 

Search Engine for Antimicrobial Resistance (SEAR), provided 

as a command-line tool and a website service, combines off-the- 

shelf computational tools to quantify antimicrobial resistance 

genes (Rowe et al., 2015). Rowe and Winn (Retrieved 2018, 

July 3. from https://github.com/will-rowe/groot) implemented 

a graph representation of genes for antibiotic resistance gene 

typing by taking advantage of an assembly graphs visualization 

tool (Wick et al., 2015), which helped visualize the variation 

graphs of short read alignments. Some of the antimicrobial 

resistance prediction tools are specialized for Mycobacterium 

tuberculosis; e.g., Comprehensive Analysis Server for the 

Mycobacterium tuberculosis complex (CASTB) (Iwai et al., 

2015), TB Profiler (Coll et al., 2015), and Mykrobe predictor 

(Bradley et al., 2015). Microbial genome sequencing and anti-

microbial resistance gene finding are static aspects of genomic 

epidemiology. Infectious disease surveillance needs to track 

infected hosts, which was described in the next subsection.

Genomic epidemiology: transmission tree inference

Tracing epidemiological footprints left in the pathogen 

genomes after or during infectious disease outbreaks considers 

relations among multiple individual hosts that are infected by 

pathogens while genotyping microbial pathogens is a single 

individual endeavor. Epidemiological data such as times and 

places of infected individuals suggest possible outbreak investi-

gators of possible dispersal routes of infectious diseases. Because 

such efforts are labor-intensive to reach decisive transmission 

mappings, increasingly available genotype data have been used 

with computational tools employing mathematical models 

(Table 1). The SIR model states that hosts of disease-causing 

microbial parasites experience infection stages of susceptible, 

infectious, and removed (Didelot et al., 2014). The microbial 

parasites in infected hosts would undergo microevolution in 

different speed. Microbial genomes in an infected individual 

may change over time during the infectious period. This simplistic 
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Table 1. Comparison of transmission tree inference methods

Software package (language)
a

Statistical method
b

Partial observation
c

Reference

n/a ML no Cottam et al. (2008)

n/a MCMC no Morelli et al. (2012)

n/a MCMC no Ypma et al. (2013)

outbreaker (R) MCMC yes Jombart et al. (2014)

n/a MCMC yes Mollentze et al. (2014)

n/a IS yes Numminen et al. (2014)

TransPhyloMatlab (Matlab) MCMC no Didelot et al. (2014)

n/a MCMC yes Lau et al. (2015)

BEAST package BEASTLIER (Java) MCMC no Hall et al. (2015)

BEAST package SCOTTI (Java) MCMC yes De Maio et al. (2016)

phybreak (R) MCMC no Klinkenberg et al. (2017)

TransPhylo (R) MCMC yes Didelot et al. (2017)

a
Software package names mean that some computational tools are available. The note of n/a implies that no such software packages are available. The word 

in the parentheses is a computer programming language used for implementing the package.
b
Statistical methods are one of three: ML for maximum likelihood, MCMC for Markov chain Monte Carlo, and IS for importance sampling.
c
Methods assume that we observe either all or some of the infected hosts.

model imposes two different evolutions on tracing epidemio-

logical footprints. First and foremost, potential and infected 

hosts are related by the unknown network that connects those 

hosts as vertices with directed edges denoting pathogen trans-

mission events between hosts. Second, microbial pathogens 

may undergo molecular evolution within each of their hosts. 

The two distinct evolutions of pathogens and hosts led to the 

pioneering statistical treatment of both epidemiological and 

genetic data for inferring transmission trees (Cottam et al., 

2008). While Cottam et al. (2008) developed a maximum- 

likelihood approach, most of the following notable implementa-

tions of transmission tree inference have been Bayesian appro-

aches. Note that, contrary to most of the other approaches, 

Numminen et al. (2014) used an importance sampling approach, 

which may take advantage of transmissions known a priori. 

Morelli et al. (2012) are one of the Bayesian approaches that 

combine epidemiological and genetic data to rebuild transmission 

trees.

The transmission tree inference procedures need simplifying 

assumptions for mathematical and computational conveniences. 

Each of such inference procedures tried to relax some of those 

assumptions. Some of the assumptions include a single trans-

mission of pathogens to a susceptible host, all observed infected 

hosts in an epidemic, constant host infection potential, and 

transmission tree interpretation of a pathogen’s phylogenetic 

tree. Examination of the four assumptions is in order. First, the 

single transmission event assumption is flawed; after susceptible 

hosts became exposed and infected, other pathogens could be 

carried to the hosts more than once. Second, the assumption 

that we observe all the infected hosts is rarely valid because 

observing all the infected hosts would be impossible. Epide-

miologists could collect infected host records retrospectively 

after the end of a disease outbreak. However, not all of the 

infected hosts could be reported to public health agencies 

because some of the infected hosts might be recovered before 

they were reported to such agencies. Infectious disease control 

agencies would want to design policies that could limit the 

spread of the disease during infectious disease epidemic, 

suggesting that our observations of infected hosts would be 

inevitably partial. Third, the assumption of constant host 

infection potential is not easily justified because pathogens 

within an infected host may change infectivity depending on 

the corresponding host’s state in times and places. Lastly, 

increasingly available genetic data have triggered the use of 

phylogenetic trees of pathogens as a surrogate of transmission 

trees of hosts. Many efforts have been made to relate evolu-

tionary trees of pathogens to the epidemiological trajectories of 

the hosts (Grenfell et al., 2004). However, one should be cautious 

to treat phylogenetic trees as epidemiological interpretation 

because pathogen’s evolutionary trajectories and host transmission 
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networks may not coincide (Romero-Severson et al., 2014).

A phylogenetic tree of pathogens could help understand the 

infection trajectories of hosts especially if pathogens like RNA 

viruses underwent a rapid evolution. However, pathogens may 

not much evolve within hosts, which may result in multiple 

lineages inside hosts. Multiple infections of pathogens from 

different host origins into a host may occur. Therefore, within- 

host evolution complicates the transmission tree inference (Worby 

et al., 2014). Ypma et al. (2013), still assuming that they 

observed all the infected hosts, was the first to develop a method 

for jointly inferring the transmission tree and phylogenetic tree 

with consideration of the within-host evolution. However, they 

failed to provide a hands-on implementation for use. Jombart et 

al. (2014) improved the statistical methods developed by Ypma et 

al. (2013) and Morelli et al. (2012) via relaxing the assumptions 

that they observed all infected hosts and a single infection led 

to an infected host. Fortunately, Jombart et al. (2014) were the 

first that provided the computational tool for inferring trans-

mission trees, outbreaker, as a statistical software R package. 

De Maio et al. (2016) applied their structured coalescent method 

(De Maio et al., 2015) to the transmission tree inference 

problem where populations and migration events represented 

hosts and transmission events, respectively. They considered 

transmission cases that result in the conflict between the phy-

logenetic and transmission trees; i.e., within-host evolution, 

non-sampled host, multiple infections to a host, and incomplete 

bottleneck.

Didelot et al. (2014), still assuming that they observed all 

infected hosts, employed a two-step procedure of inferring first 

phylogenetic trees using DNA sequence data. Afterward, they 

would estimate the transmission tree based on the phylogenetic 

trees as data to the Bayesian approach. The two-step procedure 

might fail to account for the uncertainty in pathogen’s phy-

logenetic trees although Didelot et al. (2017) defended their 

preference over the combined approach. More elaborate appro-

aches jointly estimated the pathogen’s phylogenetic tree and 

the host’s transmission tree in a combined Markov chain Monte 

Carlo (MCMC) (Hall et al., 2015; Klinkenberg et al., 2017). 

There were methods for inferring transmission trees to deal 

with partially observed epidemiological data that were often 

collected during infectious disease epidemic (Mollentze et al., 

2014; Didelot et al., 2017).

Genomic epidemiological research with the MinION 

sequencer

Genomic epidemiology studies are increasingly using genomic 

sequence data to control and oversee the spread of infectious 

diseases effectively. One of the crucial features of epidemio-

logical approaches is time. It takes time to sequence microbial 

genomes from pathogen sampling with epidemiological docu-

mentation. Currently, most high-throughput DNA sequencing 

would need the transfer of biological samples back to the 

laboratories for further purification or amplification of DNA 

molecules from a biological specimen. Sequencing library 

preparation itself requires laboratory work. Besides, microbial 

pathogens often need culture steps to obtain enough DNA 

molecules although DNA library preparation may be possible 

directly from clinical samples in a culture-independent manner. 

One DNA sequencing technology that could reduce time to 

sequence from samples is one of the third-generation sequencing 

technologies, the Oxford Nanopore Technologies’s MinION 

sequencer.

The third-generation sequencing platforms are based on 

single-molecule sequencing technologies commercialized by 

Pacific Biosciences (PacBio) (Eid et al., 2009) and the Oxford 

Nanopore Technologies (ONT) (Deamer et al., 2016). Both of 

the technologies tend to produce read sequences longer than 

those generated by the second-generation sequencing platforms. 

The third-generation sequencers, unfortunately, would suffer 

from higher rates of sequencing errors compared with those of 

the second-generation sequencers. The sequencing error rate of 

the ONT’s sequencing platform is known to be even larger than 

that of the PacBio’s sequencing platform. The molecule-level 

model of the ONT’s sequencing technology consists of three 

biological components: motor proteins, biological membranes, 

and pore proteins (Deamer et al., 2016). A motor protein binds 

to a double-stranded DNA and guides the DNA to a trans-

membrane pore protein that is bound in a membrane. Then, the 

motor protein is attached to the pore protein and unzips the 

accompanied double-stranded DNA, one strand of which passes 

through the pore protein. Electrical current flows across the 

membrane and fluctuates as bases of the unzipped single-stranded 

DNA pass through the pore. The current fluctuation produces 

wiggling analog signals. Decoding the analog signals into 

digital values is a base-calling step in the ONT’s nanopore 
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sequencing. The ONT’s MinION with a single flowcell weighed 

less than a typical smartphone, which would enable it highly 

portable. The ONT’s other benchtop sequencers would provide 

higher throughput than the MinION because of their accommo-

dation of multiple flowcells.

The genomic epidemiology with sequencing data has been 

mostly retrospective; i.e., collecting sequence data after the end 

of infectious disease outbreaks. The second-generation sequen-

cing platforms and the PacBio’s sequencing would be more 

cost-effective for analyzing sequencing data collected from 

retrospective epidemiology studies because of the lower cost of 

their sequencing per base compared with that of the ONT’s 

MinION. However, collecting sequencing data during outbreaks 

to execute infectious disease controlling measures would provide 

more effective ways of monitoring the spread of infectious 

diseases. The in-field sequencing capability of the ONT’s MinION 

is currently unique in the sequencing market, potentially 

reducing costs in some of the downstream work of surveillance 

of infectious diseases. Thus, monitoring and controlling the 

spread of infectious diseases could greatly benefit from the 

in-field sequencing feature of the ONT’s MinION. For example, 

transferring samples back to the laboratory for sequencing 

libraries could be difficult because of the physical distance or 

local regulatory limitation. Sequencing facilities might be too 

far away from the region of disease outbreaks. Biological 

samples might be prohibited from being moved into the area 

where sequencing facilities were available. Although sequencing 

facilities could be planned to be established near the region of 

a disease outbreak, sequencer manufacturers might be reluctant 

to send their employees to the region of disease outbreaks. 

Therefore, the portability of the MinION and the availability 

of the sequencing kits could allow epidemiologists or their 

collaborators to perform in-field sequencing for more effective 

surveillance of infectious diseases.

The ONT’s nanopore sequencing is still evolving and genomic 

epidemiology with such in-field sequencing data has yet to be 

developed. Here, I survey some of the use of the MinION’s 

sequencing in the areas related to genomic epidemiology. 

Votintseva et al. (2017) took advantage of the MinION’s fast 

sequencing to produce a diagnostic data for tuberculosis. The 

MinION’s sequencing starts just after loading DNA libraries, 

which allowed researchers to identify pathogenic viruses in 

three hours from sample receipt (Kilianski et al., 2016) and 

pathogens from urine in 4 h (Schmidt et al., 2017). Field 

epidemiologists may carry one of the USB-powered portable 

handheld machines to sequence pathogen DNAs after some 

library preparation steps. The MinION’s portability allowed a 

metagenomic sequencing study in the extreme environment of 

arctic permafrost ice wedge (Goordial et al., 2017). The ONT’s 

portable sequencers have been used in bacteria-causing hospital 

outbreak (Quick et al., 2015), Ebola surveillance (Quick et al., 

2016), sequencing Plasmodium falciparum for diagnostic purpose 

(Imai et al., 2018), and enterovirus genotyping (Rames and 

Macdonald, 2018).

Additionally, the ONT’s MinION sequencers have been 

applied to various microbial genetic and epidemiological studies; 

genome sequencing, strain identification, antimicrobial resistance 

gene finding (Fig. 1). First, the Oxford Nanopore Technologies 

mobile portable handheld sequencer, the MinION, has been 

used in genome assembly of Escherichia coli K-12 MG1655 

(Loman et al., 2015), Bacteroides fragilis BE1 (Risse et al., 

2015), Agrobacterium tumefaciens LBA4404 (Deschamps et 

al., 2016), multidrug-resistant Enterobacter kobei (Judge et al., 

2016), methicillin-resistant Staphylococcus aureus USA300 

(Bayliss et al., 2017), plasmids from Enterobacteriaceae isolates 

(George et al., 2017), Pseudomonas baetica a390T (Beaton et 

al., 2018), and Streptococcus pyogenes Serotype M12 (You et 

al., 2018). While many of these genomes were assembled with 

a combination of the long-read technology, the MinION, and 

other short-read technologies, some of them were completed 

using the nanopore technology only (Loman et al., 2015). The 

MinION was applied to sequencing directly from clinical samples 

without culture for studying Zika virus related infectious 

diseases (Quick et al., 2017). Second, the ONT’s single-molecule 

sequencing capacity renders the MinION a biological molecule 

detection tool for strain identification rather than a DNA 

sequencing machine. It has been applied to identify Salmonella 

enterica from food samples (Hyeon et al., 2017), multi-resistant 

Escherichia coli (Schmidt et al., 2017), Klebsiella pneumoniae 

clinical strains from liver samples (Gong et al., 2018), and 

arbovirus in mosquitos (Russell et al., 2018). Also, the MinION 

sequencing was used as species identification based on 16S 

rRNA sequencing (Benítez-Páez et al., 2016), and as a cost- 

effective bacterial communities profiling method (Kerkhof et 
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al., 2017). Third, the MinION has also been used in the studies 

of antimicrobial resistance genes in Salmonella typhi Haplotype 

58 (Ashton et al., 2015), Staphylococcus aureus and Mycobacterium 

tuberculosis (Bradley et al., 2015), multiple antibiotic resistant 

coliform bacteria (Xia et al., 2017), Klebsiella pneumoniae 

(Gorrie et al., 2018; Simner et al., 2018), and Acinetobacter 

baumannii (Hawkey et al., 2018).

Furthermore, genomic epidemiology applications could benefit 

from the ONT’s accessories that are worth mentioning. The 

ONT’s VolTRAX version 2 may allow on-site sequencing 

library preparation without the need of a back-to laboratory. 

This still portable machine removes the laboratory needs for 

sequencing, which would allow for the DNA sequencing out in 

the field. Another ONT’s product called SmidgION that was 

designed to work with a smartphone would boost the porta-

bility of the already small MinION sequencer. The MinION’s 

sequencing raw data could be sent for data analysis to the cloud 

computing serviced by its sister company of Metrichor. The 

SmidgION could allow for place-independent sequencing as 

long as wireless signals are available. One of the drawbacks of 

the MinION’s product is somewhat expensive flow cells 

compared with other sequencing technologies’ ones. Recently, 

the ONT’s Flongle that was for early access only at the time of 

writing might be more cost-effective in pathogen identification 

because it would cost much less than the MinION’s flow cells. 

Another drawback of the ONT’s sequencing product is the high 

computer hardware requirements and not-so-easy software 

installation. The ONT’s MinIT would be an excellent alternative 

to a laptop computer for managing the MinION.  

Concluding Remarks

We are entering an exciting era of microbial applications. In 

near future, researchers will carry portable devices for iden-

tifying pathogens and infected hosts in situ. Just as we consider 

the weather forecast as a norm, our descendants could watch 

infectious disease forecast in the nightly news. To achieve such 

an ambitious goal, we need to see methodological develop-

ments and societal readiness for the new era. Genotypes of 

microbial species and strains need to be stored and accessible 

publicly as soon as microbial sequencing is performed. Microbial 

sequencing needs quality control for data integrity. Pathogen’s 

epidemiological information about infected hosts needs to be 

anonymized to avoid any privacy concerns. Microbial identifying 

methods are evolving significantly fast. Therefore, public health 

agencies will possibly use real-time surveillance information to 

limit the spread of infectious diseases. 

적  요

다양한 미생물학 연구 분야의 발전에 힘입어 유전체역학은 

발전되어 왔다. 예를 들어, 대용량서열화 기술의 발전으로 미

생물 유전체의 수는 급속도로 증가해 오고 있다. 이러한 풍부

한 유전체 데이터는 전에는 보지 못한 보다 더 정확한 미생물

종의 동정에 도움을 주는 균주종 타이핑에 새로운 기회를 제

공한다. 유전체역학은 유전체에 일반적인 유전자를 찾고 표기

하는 것 뿐만 아니라 항균 저항성 유전자를 찾을 수 있다. 균주

종 타이핑과 항균 저항성 유전자 찾기는 각각 종을 구분하고 

유전체내의 유전자 위치를 결정하는 유전체 역학의 방법들로 

시간에 따른 변화가 없는 측면이다. 이에 반하여, 하나의 숙주

가 어떤 숙주를 감염시켰는지 알아내기 위해서는 감염된 숙주

들 사이의 시간에 따른 동적인 전염 경로를 추론해야 한다. 이

렇게, 균주종 타이핑, 항균 저항성 유전자 찾기, 전염 계통수 추

론을 통하여 유전체역학의 궁극적인 목표 중 하나인 미생물성 

전염병을 보다 효율적으로 감시할 수 있을 것으로 기대된다. 

그리고, 대용량서열화 기술 중, 3세대 서열화기술 중 하나인 

옥스포드 나노포어 MinION의 보다 나은 휴대성과 빠른 서열

화의 성능 덕분에 유전체역학은 더 많은 발전을 거듭할 것으로 

보인다. 이에, 본 연구는 항균 저항성 유전자를 찾고 전염병 경

로를 추론하는 계산적인 방법에 대하여 살펴보고, 미생물 유전

체역학에서 MinION이 응용된 예들에 대하여 논하였다.
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