Browse > Article
http://dx.doi.org/10.6117/kmeps.2022.29.4.015

Polyurea Cross-linked Silica Aerogel with Improved Mechanical Strength by Applying a Precursor Having a Plurality of Amino Groups  

Lee, Wonjun (Department of Materials Science and Engineering, Kangwon National University)
Kim, Taehee (Department of Materials Science and Engineering, Yonsei University)
Choi, Haryeong (Department of Materials Science and Engineering, Yonsei University)
Kim, Jiseung (Department of Materials Science and Engineering, Kangwon National University)
Lee, Hong-Sub (Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.29, no.4, 2022 , pp. 15-20 More about this Journal
Abstract
Aerogel is a material having a nanopore structure based on a high porosity. Due to this high porosity, it has excellent properties not found in conventional materials, but its application has been limited due to low mechanical strength. Therefore, to improve the mechanical strength of the aerogel, polyurea crosslinking was introduced and a precursor having an amine group essential for polyurea polymer formation was selected to synthesize a polyurea crosslinked aerogel composite. In addition, the crosslinking of polyurea was adjusted according to the number of amine groups present in aminosilane. It was confirmed through various analyses that the nanopore structure of the aerogel was maintained to have mesopores. The aerogel thus formed was able to improve the mechanical strength by about two times, and it was confirmed through field emission scanning electron microscope analysis that a one-dimensional polymer was formed on the silica aerogel surface through the introduction of ethylene diamine. The one-dimensional polymer thus formed has improved mechanical properties, resulting in securing an elastic modulus of about 2.66 MPa.
Keywords
Silica aerogel; Aminosilane; Cross-linking; Polyurea; Isocyanate; Ethylene diamine;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 N. Leventis, C. S. Leventis, N. Chandrasekaran, S. Mulik, Z. J. Larimore, H. Lu, G. Churu, and J. T. Mang, "Multifunctional polyurea aerogels from isocyanates and water. A structure- property case study", Chem. Mater., 22, 6692 (2010).   DOI
2 V. G. Parale, K. Y. Lee, and H. H. Park, "Flexible and transparent silica aerogels: An overview", J. Korean Ceram. Soc., 54, 184 (2017).   DOI
3 N. Majoul, S. Aouida, and B. Bessais, "Progress of porous silicon APTES-functionalization by FTIR investigations", Appl. Surf. Sci., 331, 388 (2015).   DOI
4 M. A. B. Meador, L. A. Capadona, L. McCorkle, D. S. Papadopoulos, and N. Leventis, "Structure Property relationships in porous 3D nanostructures as a function of preparation conditions: isocyanate cross-linked silica aerogels", Chem. Mater., 19, 2247 (2007).   DOI
5 M. S. Kavale, S. A. Mahadik, D. B. Mahadik, V. G. Parale, A. V. Rao, R. S. Vhatkar, P. B. Wagh, and S. C. Gupta, "Enrichment in hydrophobicity and scratch resistant properties of silica films on glass by grafted microporosity of the network", J. Sol-Gel Sci. Technol., 64, 9 (2012).   DOI
6 C. A. Muller, M. Maciejewski, T. Malleat, and A. Baiker, "Organically modified titania-silica aerogels for the epoxidation of olefins and allylic alcohols", ACS Catal., 184, 280 (1999).
7 T. Zhou, X. Cheng, Y. Pan, C. Li, L. Gong, and H. Zhang, "Mechanical performance and thermal stability of glass fiber reinforced silica aerogel composites based on co-precursor method by freeze drying", Appl. Surf. Sci., 437, 321 (2018)..   DOI
8 T. Arunkumar and S. Ramachandran, "Surface coating and characterisation of polyurea for liquid storage", Int. J. Ambient Energy, 38, 781 (2017).   DOI
9 D. J. Boday, R. J. Stover, B. Muriithi, M. W. Keller, J. T. Wertz, K. A. DeFriend Obrey, and D. A. Loy, "Strong, low-density nanocomposites by chemical vapor deposition and polymerization of cyanoacrylates on aminated silica aerogels", ACS Appl. Mater. Interfaces, 1, 1364 (2009).   DOI
10 H. Maleki, L. Duraes, and Antonio Portugal, "Development of mechanically strong ambient pressure dried silica aerogels with optimized properties", J. Phys. Chem. C, 119, 7689 (2015).   DOI
11 H. S. Yang, S. Y. Choi, S. H. Hyun, H. H. Park, and J. K. Hong, "Ambient-dried low dielectric SiO2 aerogel thin film", J. Non-Cryst. Solids, 221, 151 (1997).   DOI
12 V. G. Parale, D. B. Mahadik, M. S. Kavale, A. V. Rao, P. B. Wagh, and S. C. Gupta, "Potential application of silica aerogel granules for cleanup of accidental spillage of various organic liquids", Soft Nanosci. Lett., 1, 97 (2011).   DOI
13 K. Kanamori, M. Aizawa, K. Nakanishi, and T. Hanada, "New transparent methylsilsesquioxane aerogels and xerogels with improved mechanical properties", Adv. Mater. (Weinheim, Ger.), 19, 1589 (2007).   DOI
14 H. Sun, D. A. Schiraldi, D. Chen, D. Wang, and M. Sanchez-Soto, "Tough polymer aerogels incorporating a conformal inorganic coating for low flammability and durable hydrophobicity", ACS Appl. Mater. Interfaces, 8, 13051 (2016).   DOI
15 V. G. Parale, K. Y. Lee, H. Y. Nah, H. Choi, T. H. Kim, V. D. Phadtare, and H. H. Park, "Facile synthesis of hydrophobic, thermally stable, and insulative organically modified silica aerogels using co-precursor method", Ceram. Int., 44, 3966 (2018).   DOI
16 D. Wu and R. Fu., "Synthesis of organic and carbon aerogels from phenol-furfural by two-step polymerization", Microporous Mesoporous Mater., 96, 115 (2006).   DOI
17 Z. Li, X. Cheng, S. He, X. Shi, L. Gong, and H. Zhang, "Aramid fibers reinforced silica aerogel composites with low thermal conductivity and improved mechanical performance", Compos. Part A: Appl. Sci. Manuf., 84, 316 (2016).   DOI
18 F. Ilhan, E. F. Fabrizio, L. McCorkle, D. A. Scheiman, A. Dass, A. Palczer, M. B. Meador, J. C. Johnston, and N. Leventis, "Hydrophobic monolithic aerogels by nanocasting polystyrene on amine-modified silica", J. Mater. Chem., 16, 3046 (2006).   DOI
19 K. J. Chang, Y. Z. Wang, K. C. Peng, H. S. Tsai, J. R. Chen, C. T. Huang, K. S. Ho, and W. F. Lien, "Preparation of silica aerogel/polyurethane composites for the application of thermal insulation", J. Polym. Res., 21, 1 (2014).
20 G. Churu, B. Zupancic, D. Mohite, C. Wisner, H. Luo, I. Emri., C. Sotiriou-Leventis, N. Leventis, and H. Lu, "Synthesis and mechanical characterization of mechanically strong, polyurea-crosslinked, ordered mesoporous silica aerogels", J. Sol-Gel Sci. Technol., 75, 98 (2015).   DOI
21 M. A. B. Medor, E. F. Fabrizio, F. Ilhan, A. Dass, G. Zhang, P. Vassilaras, J. C. Johnston, and N. Leventis, "Cross-linking amine-modified silica aerogels with epoxies: mechanically strong lightweight porous materials", Chem. Mater., 17, 1085 (2005).   DOI
22 M. A. B. Meador, E. J. Malow, R. Silva, S. Wright, D. Quade, S. L. Vivod, H. Guo, J. Guo, and M. Cakmak, "Mechanically strong, flexible polyimide aerogels cross-linked with aromatic triamine", ACS Appl. Mater. Interfaces, 4, 536 (2012).   DOI
23 B. N. Nguyen, M. A. B. Meador, M. E. Tousley, B. Shonkwiler, L. McCorkle, D. A. Scheiman, and A. Palczer, "Tailoring elastic properties of silica aerogels cross-linked with polystyrene", ACS Appl. Mater. Interfaces, 1, 621 (2009).   DOI
24 A. Katti, N. Shimpi, S. Roy, H. Lu, E. F. Fabrizio, A. Dass, L.A. Capadona, N. Leventis, "Chemical, physical, and mechanical characterization of isocyanate cross-linked amine-modified silica aerogels", Chem. Mater., 18, 285 (2006).   DOI
25 B. N. Nguyen, M. A. B. Meador, A. Medoro, V. Arendt, J. Randall, L. McCorkle, and B. Shonkwiler, "Elastic behavior of methyltrimethoxysilane based aerogels reinforced with tri-isocyanate", ACS Appl. Mater. Interfaces, 2, 1430 (2010).   DOI