• Title/Summary/Keyword: Nanoparticles Shape

Search Result 209, Processing Time 0.025 seconds

Post Annealing Effects on Iron Oxide Nanoparticles Synthesized by Novel Hydrothermal Process

  • Kim, Ki-Chul;Kim, Young-Sung
    • Journal of Magnetics
    • /
    • v.15 no.4
    • /
    • pp.179-184
    • /
    • 2010
  • We have investigated the effects of post annealing on iron oxide nanoparticles synthesized by the novel hydrothermal synthesis method with the $FeSO_4{\cdot}7H_2O$. To investigate the post annealing effect, the as-synthesized iron oxide nanoparticles were annealed at different temperatures in a vacuum chamber. The morphological, structural and magnetic properties of the iron oxide nanoparticles were investigated with high resolution X-ray powder diffraction (XRD), high resolution transmission electron microscopy (HRTEM), Mossbauer spectroscopy, and vibrating sample magnetometer analysis. According to the XRD and HRTEM analysis results, as-synthesized iron oxide nanoparticles were only magnetite ($Fe_3O_4$) phase with face-centered cubic structure but post annealed iron oxide nanoparticles at $700^{\circ}C$ were mainly magnetite phase with trivial maghemite ($\gamma-Fe_2O_3$) phase which was induced in the post annealing treatment. The crystallinity of the iron oxide nanoparticles is enhanced by the post annealing treatment. The particle size of the as-synthesized iron oxide nanoparticles was about 5 nm and the particle shape was almost spherical. But the particle size of the post annealed iron oxide nanoparticles at $700^{\circ}C$ was around 25 nm and the particle shape was spherical and irregular. The as-synthesized iron oxide nanoparticles showed superparamagnetic behavior, but post annealed iron oxide nanoparticles at $700^{\circ}C$ did not show superparamagnetic behavior due to the increase of particle size by post annealing treatment. The saturation of magnetization of the as-synthesized nanoparticles, post annealed nanoparticles at $500^{\circ}C$, and post annealed nanoparticles at $700^{\circ}C$ was found to be 3.7 emu/g, 6.1 emu/g, and 7.5 emu/g, respectively. The much smaller saturation magnetization value than one of bulk magnetite can be attributed to spin disorder and/or spin canting, spin pinning at the nanoparticle surface.

Synthesis of Platinum Nanoparticles by Liquid Phase Reduction (액상환원공정을 이용한 백금 나노 입자의 합성)

  • Lee, Jin-Ho;Kim, Se-Hoon;Kim, Jin-Woo;Lee, Min-Ha;Kim, Young-Do
    • Journal of Powder Materials
    • /
    • v.19 no.1
    • /
    • pp.60-66
    • /
    • 2012
  • In this study, Platinum(Pt) nanoparticles were synthesized by using polyol process which is one of the liquid phase reduction methods. Dihydrogen hexachloroplatinate (IV) hexahydrate $(H_2PtCl_6{\cdot}6H_2O)$, as a precursor, was dissolved in ethylene glycol and silver nitrate ($AgNO_3$) was added as metal salt for shape control of Pt particle. Also, polyvinylpyrrolidone (PVP), as capping agent, was added to reduce the size of particle and to separate the particles. The size of Pt nanoparticles was evaluated particle size analyzer (PSA). The size and morphology of Pt nanoparticles were observed by transmission electron microscopy (TEM) and high resolution TEM (HRTEM). Synthesized Pt nanoparticles were studied with varying time and temperature of polyol process. Pt nanoparticles have been successfully synthesized with controlled sizes in the range 5-10 and 20-40 nm with cube and multiple-cube shapes.

Synthesis of Platinum Nanoparticles Using Electrostatic Stabilization and Cluster Duplication of Perfluorinated Ionomer

  • Lee, Pyoung-Chan;Kim, Dong-Ouk;Han, Tai-Hoon;Kang, Soo-Jung;Pu, Lyong-Sun;Nam, Jae-Do;Kim, Byung-Woo;Lee, Jun-Ho
    • Macromolecular Research
    • /
    • v.17 no.3
    • /
    • pp.187-191
    • /
    • 2009
  • Platinum (Pt) nanoparticles were prepared by the liquid-phase reduction of tetraammineplatinum (II) chloride $([Pt(NH_3)_4]Cl_2)$ using Nafion as a stabilizer under various conditions of the Nation phase. This method is novel in its use of electrostatic interactions between the Pt complex ions and sulfonic groups in the hydrated Nation molecules. The synthesized Pt nanoparticles of the recast film system had a cubic shape. In the case of the Nation solution system, the Pt nanoparticles mainly had a spherical shape. The shapes and sizes of the Pt nanoparticles were strongly influenced by the Nation phase.

Effect of Surfactant on Synthesis of Colloidal Ag Nanoparticles (콜로이드 Ag 나노입자 합성시 계면활성제의 영향)

  • Lee Jong-Kook;Choi Nam-Kyu;Seo Dong-Seok
    • Korean Journal of Materials Research
    • /
    • v.15 no.5
    • /
    • pp.340-347
    • /
    • 2005
  • Silver nanoparticles were synthesized by chemical reduction method from aqueous silver nitrate solution ana hydrazine as a reduction agent. The morphology, particle size and shape were dependent on the mixing method, reaction temperature and time, molar ratio of hydrazine and silver nitrate, the kind of surfactant, and the addition of surfactant. The stability of the colloidal silver was achieved by the adsorption of surfactant molecules onto the particle. Silver nanoparticles have a characteristic absorption maximum at 430 nm under UV irradiation. It was found that the colloid was nanometer m size and formed very stable dispersion of silver. The Ag nanoparticles obtained showed the spherical shape with the size range of 10-30 nm.

Shape Control of Gold Nanocrystal: Synthesis of Faceted Gold Nanoparticles and Construction of Morphology Diagram

  • Ahn, Hyo-Yong;Lee, Hye-Eun;Nam, Ki Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.281.1-281.1
    • /
    • 2013
  • Shape control of gold nanocrystal is still one of the most important challenges remaining to achieve geometry dependent properties. Thus far, several strategies have been developed to control the shape of nanoparticles, such as adding capping agents and diverse additives or adjusting the temperature and pH. Here, we used an already established seed-mediated method that allowed us to focus on controlling the growth stage. Cetyltrimethylammonium bromide (CTAB) and ascorbic acid (AA) were used as the ligand and the reducing agent, respectively, without using any additional additives during the growth stage. We investigated how the relative ratio of CTAB and AA concentrations could be a major determinant of nanoparticle shape over a wide concentration range of CTAB and AA. As a result, a morphology diagram was constructed experimentally that covered the growth conditions of rods, cuboctahedra, cubes, and rhombic dodecahedra. The trends in the morphology diagram emphasize the importance of the interplay between CTAB and AA. Furthermore, high-index faceted gold nanocrystal was obtained by two step seeded growth. Already synthesized cubic particles developed into hexoctahedral nanocrystal consisting of 48 identical {321} facets, which indicates that the growth of gold nanocrystal is affected by initial morphology of seed particles. The hexoctahedral gold nanoparticles can be used in catalysis and optical applications which exploiting their unique geometry. Our research can provide useful guidelines for designing various facetted geometries.

  • PDF

Markable Green Synthesis of Gold Nanoparticles Used As Efficacious Catalyst for the Reduction of 4-Nitrophenol

  • Rokade, Ashish A.;Yoo, Seong Il;Jin, Youngeup;Park, Seong Soo
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.251-256
    • /
    • 2020
  • The biocompatibility and plasmonic properties of Au nanoparticles make them useful for photothermal therapy, drug delivery, imaging, and many other fields. This study demonstrated a novel, facile, economic, and green synthetic method to produce gold nanoparticles. Gold nanoparticles (AuNPs) with spherical and triangular shapes were effectively synthesized using only Schisandra chenesis fruit extract as the capping and reducing agent. The shape of the AuNPs could be engineered simply by adjusting the molar concentration of HAuCl4 in the reaction mixture. The as-synthesized AuNPs were characterized using UV-VIS spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), dynamic light scattering (DLS), and energy dispersive X-ray analysis (EDXA). This study revealed that by using the HAuCl4 concentration in the AuNP synthesis, the shape and size of the AuNPs could be controlled by the concentration of HAuCl4 and Schisandra chinensis fruit extract as a surfactant. The as-synthesized AuNPs samples had sufficient colloidal stability without noticeable aggregation and showed the predominant growth of the (111) plane of face-centered cubic gold during the crystal growth. The catalytic efficiency of the AuNPs synthesized using Schisandra chenesis fruit extract was examined by monitoring the catalytic reduction of 4-nitrophenol to 4-aminophenol using Ultraviolet-visible spectroscopy (UV-Vis spectroscopy). The synthesized AuNPs showed good catalytic activity to reduce 4-nitrophenol to 4-aminophenol, revealing their practical usefulness.

The Therapeutic Role of Nanoparticle Shape in Traumatic Brain Injury : An in vitro Comparative Study

  • Youn, Dong Hyuk;Jung, Harry;Tran, Ngoc Minh;Jeon, Jin Pyeong;Yoo, Hyojong
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.2
    • /
    • pp.196-203
    • /
    • 2022
  • Objective : To perform a comparative analysis of therapeutic effects associated with two different shapes of ceria nanoparticles, ceria nanorods (Ceria NRs) and ceria nanospheres (Ceria NSs), in an in vitro model of traumatic brain injury (TBI). Methods : In vitro TBI was induced using six-well confluent plates by manually scratching with a sterile pipette tip in a 6×6-square grid. The cells were then incubated and classified into cells with scratch injury without nanoparticles and cells with scratch injury, which were treated separately with 1.16 mM of Ceria NSs and Ceria NRs. Antioxidant activities and anti-inflammatory effects were analyzed. Results : Ceria NRs and Ceria NSs significantly reduced the level of reactive oxygen species compared with the control group of SH-SY5Y cells treated with Dulbecco's phosphate-buffered saline. The mRNA expression of superoxide dismutases was also reduced in nanoparticle-treated SH-SY5Y cells, but apparently the degree of mRNA expression decrease was not dependent on the nanoparticle shape. Exposure to ceria nanoparticles also decreased the cyclooxygenase-2 expression, especially prominent in Ceria NR-treated group than that in Ceria NS-treated group. Conclusion : Ceria nanoparticles exhibit antioxidant and anti-inflammatory effects in TBI models in vitro. Ceria NRs had better anti-inflammatory effect than Ceria NSs, but showed similar antioxidant activity.

Synthesis of Shape Controlled Pd Nanoparticles and Surface-Induced Photoreduction of 4-Nitrobenzenethiol on Pd (모양이 조절된 팔라듐 나노입자의 합성과 4-나이트로벤젠 사이올의 광환원 반응)

  • Lee, Young Wook;Shin, Tae Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.458-461
    • /
    • 2019
  • The facile synthesis of shape-controlled Pd nanoparticles (PdNPs) with ascorbic acid as a reducing agent and cetyltrimethylammonium bromide (CTAB) as a capping agent is presented in this study. The synthesized PdNPs were characterized by UV-vis spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman Spectroscopy. The prepared PdNPs show efficient surface-enhanced Raman scattering (SERS) properties. SERS studies on the adsorption characteristics of 1,4-phenylene diisocyanide (1,4-PDI) on colloidal PdNPs have revealed that the relative peak intensity of the $(NC)_{free}$ and $(NC)_{bound}$ modes distinctly depends on the 1,4-PDI concentration as well as the shape of the PdNPs. Furthermore, we found that the PdNPs are also efficient photoelectron emitters such that the SERS spectrum of 4-nitrobenzenethiol (4-NBT) on PdNPs is readily converted to that of 4-aminobenzenethiol (4-ABT) under 632.8 nm radiation.

Plasmonic Effect on Graphene Metal Hybrid Films

  • Park, Si Jin;Kang, Seong Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.468-468
    • /
    • 2013
  • Self-assembled silver nanoparticles were synthesized on a graphene film to investigate plasmonic effect. Graphene was synthesized on glass substrate using chemical vapor deposition method and transfer process. Silver nanoparticles were formed using thermal evaporator and post-annealing process. The shape of silver nanoparticles was measured using a scanning electron microscopy. The resonance wavelength of plasmonic effect on graphene-silver nanoparticles was measured using transmittance spectra. The plasmon resonance wavelength was increased from 400 nm to 424 nm according to the lateral dimension of silver nanoparticles. Also we confirmed a strong plasmon effect form Raman spectra, which were measured on graphene-silver nanoparticles. The result shows that plasmon resonance wavelength could be controlled by lateral dimension of silver nanoparticles, and transparent conductive films based on plasmonic graphene could be developed.

  • PDF

Dispersion Technique of Alumina Nanoparticles in Transformer Oil (알루미나 나노분말을 함유한 변압기 절연유의 분산기술)

  • Song Hyunwoo;Choi Cheol;Choi Kyungshik;Oh Jemyung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.3
    • /
    • pp.233-239
    • /
    • 2006
  • Two different nanofluids were prepared by dispersing $Al_{2}O_3$ nanoparticles in transformer oil after hydrophobic surface modification. The agglomerated alumina nanoparticles with diameters from ${\mu}m$ to mm were ball-milled and then treated with surfactants such as lauric acid, stearic acid and oleic acid. The surface characteristics of modified nanoparticles were examined by FTIR spectroscopy. It showed that the hydrophobicity of nanoparticles was caused by esterification between hydroxyl groups on the particle surface and functional groups of surfactant. The shape and size distribution of ball-milled particles were analyzed by TEM and PSA. The results compared with the primary particles indicated that the size distributions of nanoparticles were dependant on milling times. The dispersion stability of modified nanoparticles dispersed in oil was highly dependent on the composition and amounts of surfactants.