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Objective : To perform a comparative analysis of therapeutic effects associated with two different shapes of ceria nanoparticles, 
ceria nanorods (Ceria NRs) and ceria nanospheres (Ceria NSs), in an in vitro model of traumatic brain injury (TBI).
Methods : In vitro TBI was induced using six-well confluent plates by manually scratching with a sterile pipette tip in a 6×6-square 
grid. The cells were then incubated and classified into cells with scratch injury without nanoparticles and cells with scratch injury, 
which were treated separately with 1.16 mM of Ceria NSs and Ceria NRs. Antioxidant activities and anti-inflammatory effects were 
analyzed.
Results : Ceria NRs and Ceria NSs significantly reduced the level of reactive oxygen species compared with the control group 
of SH-SY5Y cells treated with Dulbecco’s phosphate-buffered saline. The mRNA expression of superoxide dismutases was also 
reduced in nanoparticle-treated SH-SY5Y cells, but apparently the degree of mRNA expression decrease was not dependent on the 
nanoparticle shape. Exposure to ceria nanoparticles also decreased the cyclooxygenase-2 expression, especially prominent in Ceria 
NR-treated group than that in Ceria NS-treated group.
Conclusion : Ceria nanoparticles exhibit antioxidant and anti-inflammatory effects in TBI models in vitro. Ceria NRs had better anti-
inflammatory effect than Ceria NSs, but showed similar antioxidant activity.
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INTRODUCTION

Traumatic brain injury (TBI) induces brain damage via pri-

mary and secondary injuries13). Primary brain injury entails 

compression, displacement, stretching, shearing, and tearing 

of the brain parenchyma and cerebral blood vessels. In con-

trast, secondary injuries occur over hours and days after trau-

ma, and result in brain damage mediated via a series of com-

plex biochemical cascades including oxidative stress due to 

accumulation of reactive oxygen species (ROS), neuroinflam-

mation, calcium-dependent excitotoxicity, and mitochondrial 

dysfunction8). These secondary injuries can lead to structural 
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changes and neurodegeneration of the brain, in spite of ade-

quate surgical or medical management of the primary injury. 

Accordingly, efforts have been made to reduce secondary 

brain damage; however, a clinically effective drug has yet to 

discovered.

Currently, several studies are investigating the effects of ceri-

um oxides (ceria nanoparticles) as therapeutic agents. Oxygen 

storage mediated by changes in surface Ce4+ and Ce3+ provides 

catalytic activity during the redox reaction. Ceria nanoparticles 

exhibit higher catalytic activity than superoxide dismutase 

(SOD) and catalase enzymes15,21). Also, the radical scavenging 

activity is regenerated and sustained in the biological pro-

cess2,18). However, nanoparticle-based therapeutic studies in the 

field of TBI are limited compared with cancer or neurodegen-

erative diseases involving the brain. Bailey et al.2) reported that 

spherical ceria nanoparticles (Ceria NSs) improved cognitive 

function via reduced neuronal death and calcium dysregula-

tion in a rodent model of mild TBI. Theoretically, the varying 

morphology determines the composition of Ce4+ and Ce3+ on 

the surface, which alters the catalytic activity. Tube-shaped ce-

ria nanoparticles exhibit larger Brunauer-Emmett-Teller surface 

area than the other types of ceria nanoparticles. Ceria nanorods 

(Ceria NRs) showed a higher catalytic effect due the exposed 

crystal surface (110) of ceria compared with nonocubes, nano-

tubes or nanowires16). Therefore, it is necessary to analyze the 

therapeutic effects of nanoparticle shape on the TBI. Here, we 

compared the therapeutic effect of Ceria NRs and Ceria NSs in 

an in vitro model of TBI to identify a clinically effective ceria 

agent.

MATERIALS AND METHODS

All experiments were approved by the Institutional Animal 

Care and Use Committee of the Hallym University (approval 

No. R2 2019-35).

Synthesis of ceria nanoparticles
Ceria NRs were synthesized using a previously reported 

protocol with a slight modification (Fig. 1A)19). Cerium nitrate 

Fig. 1. Transmission electron microscopic images of ceria nanorods (Ceria NRs) (A) and ceria nanospheres (Ceria NSs) (B). 3-(4,5-dimethylthiazol-2-Yl)-
2,5-diphenyltetrazolium bromide (MTT) cell viability assay of SH-SY5Y cells treated with ceria nanoparticles (C). NS : non-specific, TBI : traumatic brain 
injury, DPBS : Dulbecco’s phosphate-buffered saline.
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hexahydrate (0.434 g, 1 mmol) was added to an aqueous solu-

tion of sodium hydroxide (10 M, 20 mL) in a PTFE beaker. 

The reaction mixture was vigorously stirred for 2 hours at 

room temperature before transfer to a Teflon-lined stainless-

steel autoclave, followed by incubation in a temperature-con-

trolled oven at 100°C for 10 hours. The mixture was naturally 

cooled to room temperature after completion of the reaction. 

The resultant product was centrifuged, followed by washing 

repeatedly with solvents, and then vacuum-dried for 24 hours. 

Ceria NSs were also synthesized according to a previous pro-

tocol with a slight modification (Fig. 1B)10). Cerium nitrate 

hexahydrate (0.434 g, 1 mmol) and oleylamine (3.25 g, 12 

mmol) were dissolved in xylene (15 mL). The resulting solu-

tion was vigorously stirred for 2 hours at 25°C and then heated 

to 90°C at the rate of 2°C.min-1 under vacuum. Deionized wa-

ter (1 mL) was rapidly injected into the solution under vigor-

ous stirring at 90°C to initiate the sol-gel reaction until the 

color changed from purple to cloudy yellow. The reaction 

mixture was incubated at 90°C for 3 hours to obtain a light-

yellow colloidal solution. The mixture was naturally cooled to 

ambient temperature, and Ceria NSs were precipitated by 

adding ethanol (75 mL). The obtained product was collected 

by centrifugation and washed repeatedly with ethanol, and 

then dried under vacuum for 24 hours for further use20).

Cell culture and culture conditions
Human histiocytic lymphoma (U-937), human neuroblas-

toma (SH-SY5Y), and mouse normal monocyte macrophage 

(RAW 264.7) were used for in vitro experiments. U-937 cells 

were maintained in Roswell Park Memorial Institute medium 

(Welgene Inc., Daegu, Korea) 1640 supplemented with 10% 

heat-inactivated fetal bovine serum (FBS; Welgene Inc.) and 

1% penicillin streptomycin (P/S; Gibco, Brooklyn, NY, USA). 

The SH-SY5Y cells were cultured in Ham’s-F12/Minimum Es-

sential medium (1 : 1) with 1% P/S. The RAW 264.7 cells were 

cultured in Dulbecco’s modified Eagle’s medium (Welgene 

Inc.) containing 10% FBS and 1% P/S. All cell lines were 

maintained at 37℃ in a humidified atmosphere of 5% CO2 for 

optimal growth.

Comparison of ceria nanoparticles
Antioxidant and anti-inf lammatory effects of Ceria NRs 

and Ceria NSs were investigated and compared (Fig. 2). The 

superoxide anion scavenging activity was assessed in vitro us-

ing a Superoxide Anion Assay Kit (CS1000-1KT; SigmaAl-

drich, Saint Louis, MO, USA). U-937 cells were cultured for 48 

hours and activated by treatment with 1 µg/mL of lipopoly-

saccharides (LPS; L2630; Sigma, Saint Louis, MO, USA) for 24 

hours. A U-937 cell suspension of 5.0×105 cells was added to 

each well. The reaction was initiated by adding 20 µg/mL of 

phorbol-12-myristate-13-acetate (PMA; P8139; Sigma), lumi-

nol solution, enhancer solution, and assay buffer according to 

the kit manufacturer’s protocol. A buffer containing 1.16 mM 

of Ceria NSs and Ceria NRs was used at the time of assay. The 

intensity of superoxide anion-induced luminescence intensity 

was measured every 10 minutes for 4 hours. Nitric oxide (NO) 

Fig. 2. Comparison of antioxidant (A) and anti-inflammatory effects (B) of ceria nanorods (Ceria NRs) and ceria nanospheres (Ceria NSs). Assay for the 
measurement of superoxide anions and nitric oxide (NO) levels in LPS-induced inflammation were performed separately. *p<0.05. †p<0.01. ‡p<0.001. 
LPS : lipopolysaccharides, PMA : phorbol-12-myristate-13-acetate, DPBS : Dulbecco’s phosphate-buffered saline, NS : non-specific.
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Fig. 3. An in vitro model of traumatic brain injury (TBI) induced by static mechanical injury in SH-SY5Y cells (A). Comparison of antioxidant and anti-
inflammatory effects in an in vitro TBI model using DCFH-DA staining (B [×20] and C), and the analysis of mRNA expression of SOD1 and SOD2 (D and E), 
IL-6 (F), IL-1β (G), and TNF-α (H), using quantitative real-time polymerase chain reaction are shown. Western blot analysis of COX2 expression in a model 
of cellular TBI (I) and quantification of blots using the relative optical densities of COX2 and β-actin protein (J). Error bars, mean SEM. *p<0.05. †p<0.01.  
‡p<0.001. LPS : lipopolysaccharides, PMA : phorbol-12-myristate-13-acetate, DPBS : Dulbecco’s phosphate-buffered saline, NS : non-specific, TNF-α : 
tumor necrosis factor-α.
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scavenging activity assay of ceria nanoparticles was performed 

using a Griess Reagent (Promega, Madison, WI, USA). Briefly, 

RAW264.7 cells (5.0×105 cells/well) in 96-well plate were stim-

ulated by the addition of 1 µg/mL of LPS with or without 1.16 

mM of ceria nanoparticles for 24 hours and 48 hours. Griess 

reagent was incubated with culture supernatant for 10 min-

utes at room temperature followed by measurement of absor-

bance at 550 nm.

3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazo-
lium bromide (MTT) assay

The SH-SY5Y cells (5×105 cells/well) were seeded on 96-well 

culture plates in complete medium overnight, followed by 

treatment with 1.16 mM of Ceria NRs and Ceria NSs for 24 

hours (Fig. 1C). At respective time points, 50 µL MTT tetrazo-

lium (3-(4,5-dimethylthiazolyl-2-2,5-diphenyltetrazolium 

bromide; Sigma-Aldrich-Merck, Saint Louis, MO, USA) solu-

tion from the stock (5 mg/mL) was added and the cells were 

incubated in a CO2 incubator in the dark for 2 hours. The so-

lution was removed and dissolved using 100 µL of DMSO. The 

absorbance was read at 570 nm within 30 minutes on a Glo-

Max® Discover Microplate Reader (Promega™, Madison, WI, 

USA). All experiments were performed in the dark.

In vitro model of TBI
An in vitro model of TBI was developed by modifying the 

procedure described previously23). Brief ly, six-well confluent 

plates were manually scratched with a sterile pipette tip using 

a 6×6-square grid (5 mm spacing between the lines). More 

specifically, SH-SY5Y cells were scratched with or without 1.16 

mM of ceria nanoparticles, followed by incubation of the cells 

as follows : cells without injury (control), cells with a scratch 

injury, and cells with scratch injuries treated with 1.16 mM of 

ceria nanoparticles. Following incubation for 24 hours at 37°C, 

the medium was removed and washed three times. Intracellu-

ar ROS scavenging activity of ceria nanoparticles was mea-

sured as dichloro-dihydro-fluorescein diacetate (DCFH-DA) 

(Molecular Probes. Inc., Cambridge, MA, USA) fluorescence. 

Cultured cells were subjected to western blots and quantitative 

real-time polymerase chain reaction (qRT-PCR), followed by 

protein extraction and western blotting analysis. ROS produc-

tion was measured via DCFH-DA staining. The study was 

performed in accordance with the relevant guidelines.

RNA extraction and quantitative RT-PCR
Total RNAs were extracted using easy blue and reverse tran-

scribed into cDNA using Maxime RT PreMix Kits (iNtRON 

Biotechology, Inc., Burlington, MA, USA). qRT-PCR was per-

formed in triplicate for each sample using SYBR Green PCR 

Kits (applied Biosystems, Norwalk, CT, USA) for 40 cycles 

with a 3-step program including 15 seconds of denaturation at 

94℃, 30 seconds of annealing at 55℃, and 30 seconds of ex-

tension at 70℃. Amplification specificity was assessed via 

melting curve analysis. Glyeraldehyde-3-phosphate dehydro-

genase was used an endogenous control. Expression of cDNA 

via qRT-PCR was analyzed using the 2-ΔΔct method. The 

primer sequences for qRT-PCR are as follows : SOD1, forward 

5′-TGA AGAGAGGCATGTTGGAGA-3′  and reverse 

5′-TGCCCAAGTCATCTGCTTTTT-3′; SOD2, forward 

5′-GGA AGCCATCA A ACGTGACTT-3′  and reverse 

5′-GCAGTGGATCCTGATTTGGAC-3′; interleukin (IL)-6, 

forward 5′-AATTCGGTACATCCTCGACGG-3′ and reverse 

5′-GGTTGTTTTCTGCCAGTGCC-3′; IL-1β, forward 5′-AT-

GATGGCTTATTACAGTGGCAA-3′ and reverse 5′-GTCG-

GAGATTCGTAGCTGGA-3′; tumor necrosis factor-α 

(TNF-α), forward 5′-TGTAGCCCATGTTGTAGCAAACC-3′ 
and reverse 5′-GAGGACCTGGGAGTAGATGAGGTA-3′; actin, 

forward 5′-GTGCTATCCCTGTACGCCTC-3′ and reverse 5′- 

GGCCATCTCTTGCTCGAAGT-3′.

Protein extraction and western blotting analysis
The protein concentrations were measured using Pierce 

BCA Protein Assay Kit (Thermo Fisher Scientif ic Inc., 

Waltham, MA, USA) after lysis of cells in radio-immunopre-

cipitation assay buffer supplemented with proteinase inhibitor 

cocktail. The proteins (15 µg) were separated by 10% sodium 

dodecyl sulfate-polyacrylamide gel electrophoresis and trans-

ferred onto polyvinylidene f luoride membranes. The mem-

branes were blocked with 10% bovine serum albumin for 1 

hour at room temperature and incubated with primary anti-

bodies overnight at 4℃. The primary antibodies used in this 

study were anti-COX-2 (sc-7877; 1 : 1000; Abcam, Cambridge, 

MA, USA) and anti-β-actin (ab8227; 1 : 1000; Abcam). The 

blots on the membranes were washed three times for 15 min-

utes with tris-buffered saline with 0.1% Tween 20 and then in-

cubated with horseradish peroxidase-linked secondary anti-

bodies. Blots were exposed on an X-ray film for 30 seconds 

and analyzed by Image J software (Image J 1.49 v; National 
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Institutes of Health, Bethesda, MD, USA).

Statistical analysis
Results of the data are expressed as the mean±standard er-

ror of the mean. Student’s t-test or one-way ANOVA with 

post-hoc Bonferroni correction was performed for all possible 

pair-wise comparison6). p-values <0.05, <0.01, and <0.001 are 

represented by *, †, and ‡, respectively. All statistical analyses 

were carried out using GraphPad Prism software (v.6.01; 

GraphPad Software Inc., San Diego, CA, USA).

RESULTS

The MTT assay results indicated the absence of adverse ef-

fects (loss of cell viability) of ceria nanoparticles at a dose of 

1.16 nM (Fig. 1C). Also, there was no significant difference in 

cell viability according to ceria shape. The antioxidant effect 

of the ceria nanoparticles was determined using Superoxide 

anion assays. Ceria NRs and Ceria NSs reduced the generation 

of superoxide anion compared with Dulbecco’s phosphate-

buffered saline after stimulation of LPS-primed U937 cells 

with PMA (Fig. 2A). The release of nitrite, which is the pre-

dominant metabolite of NO, into the culture medium of 

RAW264.7 cells under LPS stimulation was detected using a 

Griess reagent. When cells were treated with a combination of 

ceria nanoparticles and 1 µg/mL of LPS, the release of nitrite 

at 24 and 48 hours was significantly reduced compared with 

the level in the group treated with LPS only (Fig. 2B).

Following TBI-induced changes in SH-SY5Y cells, the 

DCFH-DA assay was performed to determine the differences 

in total intracellular ROS under confocal laser scanning mi-

croscopy in the different treatment groups (Fig. 3A-C). Ceria 

NRs and Ceria NSs significantly reduced the ROS levels inside 

cells compared with the control group. Reduced total ROS 

level showed similar changes in the superoxide anion assay. 

Based on these results, the mRNA expression of SODs was 

quantified using qRT-PCR. Ceria nanoparticles reduced the 

expression of SOD1 and SOD2 in SH-SY5Y cells compared 

with control (Fig. 3D and E). Ceria NRs and Ceria NSs did not 

alter the decrease in the mRNA expression of SOD1 and 

SOD2. In addition, Ceria NRs had lower levels of IL-6, IL-1β, 

and TNF-α than Ceria NSs (Fig. 3F-H). Ceria nanoparticles 

also decreased the COX2 level, which is responsible for induc-

ing inf lammation, in the cellular TBI model (Fig. 3I and J). 

Ceria NRs (0.438±0.105) showed better anti-inf lammatory 

activity than ceria NSs (1.321±0.139; p=0.025).

DISCUSSION

Effective delivery of the nanoparticles into the injured brain 

is a challenge due to the presence of blood-brain barrier (BBB). 

BBB is composed of vascular endothelial cells, neurons, and 

glial cells. It stabilizes the central nervous system by prevent-

ing the entry of exogenous compounds and blood-borne sub-

stances from brain parenchyma1,7). TBI loosens the tight junc-

tions, and thereby increases the permeability of BBB, which 

leads to an influx of inflammasomes into the brain. This phe-

nomenon not only occurs immediately after TBI, but also af-

ter a few days. Baldwin et al.3) showed a biphasic opening of 

the BBB following severe TBI, suggesting the need for ade-

quate treatment of secondary brain injury similar to the treat-

ment immediately post-TBI. Oxidative stress due to an imbal-

ance in pro-oxidant-antioxidant levels plays a vital role in the 

pathophysiology of secondary brain injury17). An increase in 

ROS production during the oxidation of proteins and nucleic 

acids can lead to cellular membrane disruption, which in-

creases the release of neuroinflammatory markers such as IL-

6, COX2, and TNF-α9). In addition, increased oxidative stress 

and inflammatory response resulted in structural changes of 

the brain, even in mild TBI. Dall’Acqua et al.4) reported a 

functional hypoconnectivity in the early phase following mild 

TBI. The structural and functional network was impaired  

1 year after trauma, despite partial normalization. According-

ly, effective treatment of TBI requires an increase in the anti-

oxidant effects and reduction in acute and chronic inflamma-

tion in the brain by stabilizing the BBB long term.

Pharmacological studies investigated the role of glycol-con-

jugated SOD, tirilazad mesylate, and dexanabinol in effective-

ly decreasing oxidative stress and neuroinflammation. Hamm 

et al.5) reported that polyethylene glycol-conjugated SOD re-

duced the neurological damage via free radical scavenging ef-

fect and improved cerebral blood f low. Treatment with 

tirilazad mesylate reduced the mortality rate of male patients 

with severe TBI12). However, dexanabinol did not show thera-

peutic effects based on the extended Glasgow outcome scale at 

6 months compared with the placebo group11). Since the 2010s, 
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ceria nanoparticles have been used to treat brain injury. Ceria 

nanoparticles exhibit antioxidant and anti-inflammatory ef-

fects via rapid Ce3+/Ce4+ cycling in the catalytic pathway. Such 

redox properties depend on the shape and size of the nanopar-

ticles. Compared with Ceria NSs, Ceria NRs were less stable 

and contained high-energy reactive crystal planes. Ceria NRs 

provided higher oxygen storage capacity and catalytic activity 

for CO oxidation22,24). In addition, Ceria NRs exhibited a 

higher Ce3+/Ce4+ molar ratio on the surface (0.40) than Ceria 

NSs (0.27). Accordingly, it is possible that Ceria NRs manifest 

a better therapeutic effect than Ceria NSs. In our study, the 

mRNA expression of SOD1 and SOD2, and protein levels of 

COX2 were decreased in the group treated with ceria 

nanoparticles. However, Ceria NRs and Ceria NSs similarly 

decreased the mRNA expression of SOD1 and SOD2, al-

though Ceria NRs showed better anti-inflammatory activity 

than Ceria NSs. The relatively high dosage of nanoparticles 

used in this experiment may affect the outcomes. Optimal 

therapeutic effects were found in in vitro models of mild TBI 

with 10 nM of ceria nanoparticles compared with 1 nM and 

100 nM. Although the dosage of ceria nanoparticles was based 

on a previous report6), an appropriate dosage has yet to be de-

termined by testing the toxicity of various concentrations. 

Further efforts are needed to enhance the therapeutic effects 

of nanoparticles via changes in structural properties or mix-

ing ceria with other substances, and not based on relative 

changes in nanoparticle shape. Nance et al.14) reported that 

neutral dendrimers are transported efficiently to the injured 

brain and localized in the glial cells. In addition, manganese 

or cobalt may enhance the catalytic effects. Thus, a follow-up 

study to investigate the in vivo and in vitro effects is needed 

under various conditions.

The study limitations are as follows. First, it is difficult to 

reproduce secondary brain injury after TBI via in vitro study. 

In addition, we compared only the antioxidant and anti-in-

flammatory effects of Ceria NRs and Ceria NSs. Accordingly, 

our findings are limited because actual regeneration of dam-

aged brain cells and recovery of the neurological function 

cannot be achieved. Thus, the effects of Ceria NRs and Ceria 

NSs should be identified in different types of neurons in the 

brain via follow-up studies. Second, the distribution of Ceria 

NRs in the brain should be investigated using an in vivo mod-

el of TBI, although a single injection of ceria nanoparticles was 

distributed well in the brain2). Third, the degree of TBI dam-

age may affect the effects of ceria nanoparticles. This study 

represents a proof-of-concept study to support our hypothesis. 

Accordingly, various degrees of stretch injury using the cell 

injury controller are needed to further corroborate our results.

CONCLUSION

Ceria nanoparticles exhibited antioxidant and anti-inflam-

mation effects in in vitro models of TBI. No significant differ-

ence was detected between the antioxidant activities of Ceria 

NRs and Ceria NSs, although Ceria NRs showed a pro-

nounced anti-inflammatory effect.
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