Browse > Article
http://dx.doi.org/10.4313/JKEM.2019.32.6.458

Synthesis of Shape Controlled Pd Nanoparticles and Surface-Induced Photoreduction of 4-Nitrobenzenethiol on Pd  

Lee, Young Wook (Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology)
Shin, Tae Ho (Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.32, no.6, 2019 , pp. 458-461 More about this Journal
Abstract
The facile synthesis of shape-controlled Pd nanoparticles (PdNPs) with ascorbic acid as a reducing agent and cetyltrimethylammonium bromide (CTAB) as a capping agent is presented in this study. The synthesized PdNPs were characterized by UV-vis spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman Spectroscopy. The prepared PdNPs show efficient surface-enhanced Raman scattering (SERS) properties. SERS studies on the adsorption characteristics of 1,4-phenylene diisocyanide (1,4-PDI) on colloidal PdNPs have revealed that the relative peak intensity of the $(NC)_{free}$ and $(NC)_{bound}$ modes distinctly depends on the 1,4-PDI concentration as well as the shape of the PdNPs. Furthermore, we found that the PdNPs are also efficient photoelectron emitters such that the SERS spectrum of 4-nitrobenzenethiol (4-NBT) on PdNPs is readily converted to that of 4-aminobenzenethiol (4-ABT) under 632.8 nm radiation.
Keywords
Photoreduction; SERS; Shape control; Pd nanoparticles;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y.W.C. Cao, R. Jin, and C. A. Mirkin, Science, 297, 1536 (2002). [DOI: https://doi.org/10.1126/science.297.5586.1536]   DOI
2 W. P. Halperin, Rev. Mod. Phys., 58, 533 (1986). [DOI: https://doi.org/10.1103/RevModPhys.58.533]   DOI
3 L. N. Lewis, Chem. Rev., 93, 2693 (1993). [DOI: https://doi.org/10.1021/cr00024a006]   DOI
4 T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, and M. A. El-Sayed, Science, 272, 1924 (1996). [DOI: https://doi.org/10.1126/science.272.5270.1924]   DOI
5 S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A.A.G. Requicha, and H. A. Atwater, Adv. Mater., 13, 1501 (2001). [DOI: https://doi.org/10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-Z]   DOI
6 S. Chen and Y. Yang, J. Am. Chem. Soc., 124, 5280 (2002). [DOI: https://doi.org/10.1021/ja025897+]   DOI
7 X. Zhang, M. A. Young, O. Lyandres, and R. P. Van Duyne, J. Am. Chem. Soc., 127, 4484 (2005). [DOI: https://doi.org/10.1021/ja043623b]   DOI
8 M. Kim, Y. Kim, J. W. Hong, S. Ahn, W. Y. Kim, and S. W. Han, Chem. Commun., 50, 9454 (2014). [DOI: https://doi.org/10.1039/C4CC02494J]   DOI
9 S. Choi, H. Jeong, K. H. Choi, J. Y. Song, and J. Kim, ACS Appl. Mater. Interfaces, 6, 3002 (2014). [DOI: https://doi.org/10.1021/am405601g]   DOI
10 X. Zhang, M. A. Young, O. Lyandres, and R. P. Van Duyne, J. Am. Chem. Soc., 127, 4484 (2005). [DOI: https://doi.org/10.1021/ja043623b]   DOI
11 P. Xi, F. Chen, G. Xie, C. Ma, H. Liu, C. Shao, J. Wang, Z. Xu, X. Xu, and Z. Zeng, Nanoscale, 4, 5597 (2012). [DOI: https://doi.org/10.1039/C2NR31010D]   DOI
12 T. K. Sau and A. L. Rogach, Adv. Mater., 22, 1781 (2010). [DOI: https://doi.org/10.1002/adma.200901271]   DOI
13 N. H. Kim and K. Kim, J. Phys. Chem. B, 110, 1837 (2006). [DOI: https://doi.org/10.1021/jp055541v]   DOI
14 B. O. Skadtchenkoand and R. Aroca, Spectrochim. Acta, Part A, 57, 1009 (2001). [DOI: https://doi.org/10.1016/S1386-1425(00)00415-7]   DOI