DOI QR코드

DOI QR Code

모양이 조절된 팔라듐 나노입자의 합성과 4-나이트로벤젠 사이올의 광환원 반응

Synthesis of Shape Controlled Pd Nanoparticles and Surface-Induced Photoreduction of 4-Nitrobenzenethiol on Pd

  • 이영욱 (한국세라믹기술원 에너지환경본부) ;
  • 신태호 (한국세라믹기술원 에너지환경본부)
  • Lee, Young Wook (Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Shin, Tae Ho (Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology)
  • 투고 : 2019.08.02
  • 심사 : 2019.08.09
  • 발행 : 2019.11.01

초록

The facile synthesis of shape-controlled Pd nanoparticles (PdNPs) with ascorbic acid as a reducing agent and cetyltrimethylammonium bromide (CTAB) as a capping agent is presented in this study. The synthesized PdNPs were characterized by UV-vis spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman Spectroscopy. The prepared PdNPs show efficient surface-enhanced Raman scattering (SERS) properties. SERS studies on the adsorption characteristics of 1,4-phenylene diisocyanide (1,4-PDI) on colloidal PdNPs have revealed that the relative peak intensity of the $(NC)_{free}$ and $(NC)_{bound}$ modes distinctly depends on the 1,4-PDI concentration as well as the shape of the PdNPs. Furthermore, we found that the PdNPs are also efficient photoelectron emitters such that the SERS spectrum of 4-nitrobenzenethiol (4-NBT) on PdNPs is readily converted to that of 4-aminobenzenethiol (4-ABT) under 632.8 nm radiation.

키워드

참고문헌

  1. Y.W.C. Cao, R. Jin, and C. A. Mirkin, Science, 297, 1536 (2002). [DOI: https://doi.org/10.1126/science.297.5586.1536]
  2. W. P. Halperin, Rev. Mod. Phys., 58, 533 (1986). [DOI: https://doi.org/10.1103/RevModPhys.58.533]
  3. L. N. Lewis, Chem. Rev., 93, 2693 (1993). [DOI: https://doi.org/10.1021/cr00024a006]
  4. T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, and M. A. El-Sayed, Science, 272, 1924 (1996). [DOI: https://doi.org/10.1126/science.272.5270.1924]
  5. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A.A.G. Requicha, and H. A. Atwater, Adv. Mater., 13, 1501 (2001). [DOI: https://doi.org/10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-Z]
  6. S. Chen and Y. Yang, J. Am. Chem. Soc., 124, 5280 (2002). [DOI: https://doi.org/10.1021/ja025897+]
  7. X. Zhang, M. A. Young, O. Lyandres, and R. P. Van Duyne, J. Am. Chem. Soc., 127, 4484 (2005). [DOI: https://doi.org/10.1021/ja043623b]
  8. M. Kim, Y. Kim, J. W. Hong, S. Ahn, W. Y. Kim, and S. W. Han, Chem. Commun., 50, 9454 (2014). [DOI: https://doi.org/10.1039/C4CC02494J]
  9. S. Choi, H. Jeong, K. H. Choi, J. Y. Song, and J. Kim, ACS Appl. Mater. Interfaces, 6, 3002 (2014). [DOI: https://doi.org/10.1021/am405601g]
  10. X. Zhang, M. A. Young, O. Lyandres, and R. P. Van Duyne, J. Am. Chem. Soc., 127, 4484 (2005). [DOI: https://doi.org/10.1021/ja043623b]
  11. P. Xi, F. Chen, G. Xie, C. Ma, H. Liu, C. Shao, J. Wang, Z. Xu, X. Xu, and Z. Zeng, Nanoscale, 4, 5597 (2012). [DOI: https://doi.org/10.1039/C2NR31010D]
  12. T. K. Sau and A. L. Rogach, Adv. Mater., 22, 1781 (2010). [DOI: https://doi.org/10.1002/adma.200901271]
  13. N. H. Kim and K. Kim, J. Phys. Chem. B, 110, 1837 (2006). [DOI: https://doi.org/10.1021/jp055541v]
  14. B. O. Skadtchenkoand and R. Aroca, Spectrochim. Acta, Part A, 57, 1009 (2001). [DOI: https://doi.org/10.1016/S1386-1425(00)00415-7]