• Title/Summary/Keyword: Nanoparticles Shape

Search Result 209, Processing Time 0.027 seconds

Shape- and size-controlled synthesis of noble metal nanoparticles

  • Choi, Kyeong Woo;Kim, Do Youb;Ye, Seong Ji;Park, O Ok
    • Advances in materials Research
    • /
    • v.3 no.4
    • /
    • pp.199-216
    • /
    • 2014
  • Noble metal nanoparticles (mainly Au, Ag, Pt and Pd) have received enormous attention owing to their unique and fascinating properties. In the past decades, many researchers have reported methods to control the shape and the size of these noble metal nanoparticles. They have consequently demonstrated outstanding and tunable properties and thus enabled a variety of applications such as surface plasmonics, photonics, diagnostics, sensing, energy storage and catalysis. This paper focuses on the recent advances in the solution-phase synthesis of shape- and size-controlled noble metal nanoparticles. The strategies and protocols for the synthesis of the noble metal nanoparticles are introduced with discussion of growth mechanisms and important parameters, to present the general criteria needed for producing desirable shapes and sizes. This paper reviews their remarkable properties as well as their shape- and size- dependence providing insights on the manipulation of shape and size of metal nanoparticles, necessary for appropriate applications. Finally, several applications using the shape- and size-controlled noble metal nanoparticles are highlighted.

Effect of Shape Magnetic Anisotropy of Amorphous Fe-B-P Nanoparticles on Permeability

  • Lee, Ji Eun;Tsedenbal, Bulgan;Koo, Bon Heun;Huh, Seok Hwan
    • Korean Journal of Materials Research
    • /
    • v.30 no.11
    • /
    • pp.589-594
    • /
    • 2020
  • Many electronic applications require magnetic materials with high permeability and frequency properties. We improve the magnetic permeability of soft magnetic powder by controlling the shape magnetic anisotropy of the powders and through the preparation of amorphous nanoparticles. For this purpose, the effect of the shape magnetic anisotropy of amorphous Fe-B-P nanoparticles is observed through a magnetic field and the frequency characteristics and permeability of these amorphous nanoparticles are observed. These characteristics are investigated by analyzing the composition of particles, crystal structure, microstructure, magnetic properties, and permeability of particles. The composition, crystal structure, and microstructure of the particles are analyzed using inductively coupled plasma optical emission spectrometry-, X-ray diffraction, scanning electron microscopy and focused ion beam analysis. The saturation magnetization and permeability are measured using a vibrating sample magnetometer and an LCR meter, respectively. It is confirmed that the shape magnetic anisotropy of the particles influences the permeability. Finally, the permeability and frequency characteristics of the amorphous Fe-B-P nanoparticles are improved.

Fabrication of shape-controlled Au nanoparticle arrays for SERS substrates

  • Shin, Seon Mi;Choi, Kyeong Woo;Ye, Seong Ji;Kim, Young Yun;Park, O Ok
    • Advances in materials Research
    • /
    • v.3 no.3
    • /
    • pp.139-149
    • /
    • 2014
  • Surface enhanced Raman Scattering (SERS) has attracted attention because the technique enables detection of various chemicals, even down to single molecular scale. Among the diverse candidates for SERS substrates, Au nanoparticles are considered promising due to their fine optical properties, chemical stability and ease of surface modification. Therefore, the fabrication and optical characterization of gold particles on solid supports is highly desirable. Such structures have potential as SERS substrates because the localized surface plasmon resonance of gold nanoparticles is very sensitive to combined molecules and environments. In addition, it is well-known that the properties of Au nanoparticles are strongly dependent on their shape. In this work, arrays of shape-controlled Au nanoparticles were fabricated to exploit their enhanced and reproducible optical properties. First, shape-controlled Au nanoparticles were prepared via seed mediated solution-phase synthesis, including spheres, octahedra, and rhombic dodecahedra. Then, these shape-controlled Au nanoparticles were arranged on a PDMS substrate, which was nanopatterned using soft lithography of poly styrene particles. The Au nanoparticles were selectively located in a pattern of hexagonal spheres. In addition, the shape-controlled Au nanoparticles were arranged in various sizes of PDMS nanopatterns, which can be easily controlled by manipulating the size of polystyrene particles. Finally, the optical properties of the fabricated Au nanoparticle arrays were characterized by measuring surface enhanced Raman spectra with 4-nitrobenezenethiol.

Antimicrobial Activity of Silver Nanoparticles Attached on the Surface of Salt and Sucrose (은나노 소금과 은나노 설탕을 이용한 은나노 입자의 항균 특성 연구)

  • Seon, Yong-Ho
    • KSBB Journal
    • /
    • v.28 no.4
    • /
    • pp.249-253
    • /
    • 2013
  • In this study, we analyzed the attachment amount and the surface properties, such as shape and attachment aspect of silver nanoparticles on the surface of salt and sucrose. In addition, we investigated the antimicrobial activity of silver nanoparticles by measuring total colony counts and total coliforms in sewage according to the time and the amount of silver nanoparticles. As a result, it is found that silver nanoparticles are attached on the surface of salt and sucrose from the SEM images and there is no microorganisms on the surface of salt and sucrose. Silver nanoparticles on salt were rod shape but silver nanoparticles on sucrose were round shape. Also, the content of silver was 0.735 mg/g on salt and 0.885 mg/g on sucrose. In all experiments, total colony counts and total coliforms sharply declined initially, and it decreased gradually as change the time. When injection amount of nano silver sucrose and salt increased, the width of decline was greater. The amount of total colony counts and total coliforms of nano silver salt was much lower and the disinfection efficiency was higher comparing with nano silver sucrose. That means the case of nano silver salt is much better at the antimicrobial activity.

Shape-dependent Adhesion and Friction on Au Nanoparticles Probed with Atomic Force Microscopy

  • Yuk, Youngji;Hong, Jong Wook;Han, Sang Woo;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.141-141
    • /
    • 2013
  • Shape control of metal nanocrystals has broad applications, including catalysis, plasmonics, and sensing. It was found that controlling the atomic arrangement on metal nanocrystal surfaces affects many properties, including the electronic dipole or work function. Tuning the surface structure of exposed facets of metal nanocrystals was enabled by shape control. We investigated the effect of shape on nanomechanical properties, including friction and adhesion forces. Two nanoparticles systems, high-index {321} and low-index {100}, were used as model nanoparticle surfaces. Scanning force microscopy was used to probe nanoscale friction and adhesion. Because of the abundant presence of high-density atomic steps and kinks, high-index faceted nanoparticles have a higher surface energy than low-index faceted cubic nanoparticles. Due to this high surface energy, high-index faceted particles have shown stronger adhesion and higher friction than low-index nanoparticles. We discuss the results in light of the differences in surface energy as well as the effect of capping layers in the measurement.

  • PDF

Effects of Convection Gas on Formation of Sn Oxide Nanoparticles (Sn 산화물 나노입자 형성에 미치는 대류 가스의 영향)

  • ;;;K. Niihara
    • Journal of Powder Materials
    • /
    • v.9 no.1
    • /
    • pp.32-37
    • /
    • 2002
  • In the present study of IGC (Inert Gas Condensation) evaporation-condensation processing study, the effects of IGC convection gas on the crystallographic structure, size and shape of tin oxide nanoparticles were investigated. In addition, the phase transformation of tin oxide nanoparticles was studied after heat treatment. IGC processing was conducted at 1000℃ for 1 hr. The mixture gas of oxygen and helium was used as a convection gas. Metastable tetragonal SnO nanoparticles were obtained at a lower convection gas pressure, whereas amorphous tin oxide nanoparticles were obtained at a higher one. The formation of amorphous phase could be explained by the rapid quenching of the vaporized atoms. The resultant nanoparticles size was about 10 nm with a rounded shape. The tin oxide nanoparticles prepared by IGC were almost transformed to the stable tetragonal SnO₂ after heat treatment.

Flow Characteristics of Al2O3 Nanofluids with Nanoparticles of Various Shapes (나노입자 형상 변화에 따른 알루미나 나노유체의 유동 특성)

  • Hwang, Kyo-Sik;Ha, Hyo-Jun;Jang, Seok-Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.3
    • /
    • pp.293-299
    • /
    • 2011
  • To study the flow characteristics of water-based $Al_2O_3$ nanofluids according to the shape of the nanoparticles, we measure the pressure drop in a fully developed laminar flow regime. Water-based $Al_2O_3$ nanofluids of 0.3 Vol.% with sphere-, rod-, platelet-, and brick-shaped nanoparticles are manufactured by the two-step method. Zeta potential is measured to examine the suspension and dispersion characteristics, and TEM image is considered to confirm the shape characteristics of the nanoparticles. The experimental results show that the pressure drop of $Al_2O_3$ nanofluids depends on the shape of the nanoparticles although the nanofluids has same volume fraction of nanoparticles. This is explained by the surface area per unit mass of the nanoparticles and the size of the nanoparticles suspended in the base fluids.

Catalyst Enhanced by Controlling Structure and Shape of Nanocrystals, Support Materials, and Hybrid System in DMFCs (나노입자의 구조와 모양, 담지체 및 하이브리드 시스템 제어를 통한 직접메탄올 연료전지의 촉매 개발)

  • Lee, Young Wook;Shin, Tae Ho
    • Ceramist
    • /
    • v.22 no.2
    • /
    • pp.189-197
    • /
    • 2019
  • Direct methanol fuel cells (DMFCs) have found a wide variety of commercial applications such as portable computer and mobile phone. In a fuel cell, the catalysts have an important role and durability and efficiency are determined by the ability of the catalyst. The activity of the catalyst is determined by the structure and shape control of the nanoparticles and the dispersion of the nanoparticles and application system. The surface energy of nanoparticles determines the activity by shape control and the nanostructure is determined by the ratio of bi- and tri-metals in the alloy and core-shell. The dispersion of nanoparticles depends on the type of support such as carbon, graphen and metal oxide. In addition, a hybrid system using both optical and electrochemical device has been developed recently.

Synthesis and Photocatalytic Properties of SnO2-Mixed and Sn-Doped TiO2 Nanoparticles

  • Choi, Hong-Goo;Yong, Seok-Min;Kim, Do-Kyung
    • Korean Journal of Materials Research
    • /
    • v.22 no.7
    • /
    • pp.352-357
    • /
    • 2012
  • $SnO_2$-mixed and Sn-doped $TiO_2$ nanoparticles were synthesized via a hydrothermal process. $SnO_2$-mixed $TiO_2$ nanoparticles prepared in a neutral condition consisted of anatase $TiO_2$ nanoparticles(diamond shape, ~25 nm) and cassiterite $SnO_2$ nanoparticles(spherical shape, ~10 nm). On the other hand, Sn-doped $TiO_2$ nanoparticles obtained under a high acidic condition showed a crystalline phase corresponding to rutile $TiO_2$. As the Sn content increased, the particle shape changed from rod-like(d~40 nm, 1~200 nm) to spherical(18 nm) with a decrease in the particle size. The peak shift in the XRD results and a change of the c-axis lattice parameter with the Sn content demonstrate that the $TiO_2$ in the rutile phase was doped with Sn. The photocatalytic activity of the $SnO_2$-mixed $TiO_2$ nanoparticles dramatically increased and then decreased when the $SnO_2$ content exceeded 4%. The increased photocatalytic activity is mainly attributed to the improved charge separation of the $TiO_2$ nanoparticles with the $SnO_2$. In the case of Sn-doped $TiO_2$ nanoparticles, the photocatalytic activity increased slightly with the Sn content due most likely to the larger energy bandgap caused by Sn-doping and the decrease in the particle size. The $SnO_2$-mixed $TiO_2$ nanoparticles generally exhibited higher photocatalytic activity than the Sn-doped $TiO_2$ nanoparticles. This was caused by the phase difference of $TiO_2$.

Comparison of Distribution and Inflammatory Response by Diameter and Shape of Silver Nanoparticles (은나노 입자의 입경 크기 및 형태에 따른 체내 동태 및 염증 반응)

  • Kim, Soo-Nam;Roh, Jin-Kyu;Kang, Min-Sung;Han, Young-Ah;Lee, Byoung-Seok;Kim, Young-Hun;Park, Kwang-Sik;Choi, Kyung-Hee;Park, Eun-Jung
    • Environmental Analysis Health and Toxicology
    • /
    • v.25 no.3
    • /
    • pp.215-222
    • /
    • 2010
  • The market size of engineered nanoparticles is rapidly increasing due to the fast application of nanotechnologies into different industries and consumer products. The development of new technology and materials has improved human's quality of life, but it also entails the possibility of exposure to new materials. In this study, we compared the distribution in the body by the inflow of silver nanoparticles having another diameter and shape at 1 h or 24 h after injection via the tail vein. And, we compared the cell composition and cytokine concentration in BAL fluid, and histopathological changes. As results, discharge of silver nanoparticles having small diameter and sphere shape was more rapid than that of big diameter or plate shape. It is estimated that the toxicity in liver and lung was proportional to accumulation level. The persistence of inflammation was also longer in mice treated with plate shape. Consequently, we suggest that the first choice of silver nanoparticles having small diameter and sphere shape in applying is desirable.