Browse > Article
http://dx.doi.org/10.12989/amr.2014.3.4.199

Shape- and size-controlled synthesis of noble metal nanoparticles  

Choi, Kyeong Woo (Department of Chemical and Biomolecular Engineering (BK21+ graduate program), Korea Advanced Institute of Science and Technology (KAIST))
Kim, Do Youb (Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT))
Ye, Seong Ji (Department of Chemical and Biomolecular Engineering (BK21+ graduate program), Korea Advanced Institute of Science and Technology (KAIST))
Park, O Ok (Department of Chemical and Biomolecular Engineering (BK21+ graduate program), Korea Advanced Institute of Science and Technology (KAIST))
Publication Information
Advances in materials Research / v.3, no.4, 2014 , pp. 199-216 More about this Journal
Abstract
Noble metal nanoparticles (mainly Au, Ag, Pt and Pd) have received enormous attention owing to their unique and fascinating properties. In the past decades, many researchers have reported methods to control the shape and the size of these noble metal nanoparticles. They have consequently demonstrated outstanding and tunable properties and thus enabled a variety of applications such as surface plasmonics, photonics, diagnostics, sensing, energy storage and catalysis. This paper focuses on the recent advances in the solution-phase synthesis of shape- and size-controlled noble metal nanoparticles. The strategies and protocols for the synthesis of the noble metal nanoparticles are introduced with discussion of growth mechanisms and important parameters, to present the general criteria needed for producing desirable shapes and sizes. This paper reviews their remarkable properties as well as their shape- and size- dependence providing insights on the manipulation of shape and size of metal nanoparticles, necessary for appropriate applications. Finally, several applications using the shape- and size-controlled noble metal nanoparticles are highlighted.
Keywords
metal nanoparticles; size and shape; growth mechanism; properties; applications;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Zhang, H., Jin, M. and Xia, Y. (2012), "Noble-Metal nanocrystals with concave surfaces: Synthesis and applications", Angew. Chem. Int. Ed., 51(31), 7656-7673.   DOI
2 Zhang, H., Jin, M., Xiong, Y., Lim, B. and Xia, Y. (2013), "Shape-Controlled synthesis of Pd nanocrsytals and their catalytic applications", Acc. Chem. Res., 46(8), 1783-1794.   DOI
3 Zheng, H., Smith, R.K., Jun, Y.-W., Kisielowski, C., Dahmen, U. and Alivisatos, A.P. (2009), "Observation of single colloidal platinum nanocrystal growth trajectories", Science, 324(5932), 1309-1312.   DOI
4 Zhou, Z.-Y., Tian, N., Huang, Z.Z., Chen, D.-J. and Sun, S.-G. (2008), "Nanoparticle catalyst with high energy surface and enhanced activity synthesized by electrochemical method", Faraday Discuss., 2009, 140, 81-92.   DOI
5 Aiken III, J.D. and Finke, R.G. (1999), "A review of modern transition-metal nanoclusters: Their synthesis, characterization, and applications in catalysis", J. Mol. Catal. A, 145(1), 1-44.   DOI
6 Arico, A.S., Bruce, P., Scrosati, B., Tarascon, J.-M. and van Schalkwijk, W. (2005), "Nanostructured materials for advanced energy conversion and storage devices", Nature Mater., 4(5), 366-377.   DOI   ScienceOn
7 Banfield, J.F., Welch, S.A., Zhang, H., Ebert, T.T. and Penn, R.L. (2000), "Aggregation-Based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products", Sci., 289(5480), 751-754.   DOI   ScienceOn
8 Burda, C., Chen, X., Narayanan, R. and El-Sayed, M.A. (2005), "Chemistry and properties of nanocrystals of different shapes", Chem. Rev., 105(4), 1025-1102.   DOI   ScienceOn
9 Chen, J., Lim, B., Lee, E.P. and Xia, Y. (2009), "Shape-Controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications", Nano Today, 4(1), 81-95.   DOI   ScienceOn
10 Choi, K.W., Kim, D.Y., Zhong, X.-L., Li, Z.-Y., Im, S.H. and Park, O.O. (2013), "Robust synthesis of gold rhombic dodecahedra with well-controlled sizes and their optical properties", Cryst. Eng. Comm., 15(2), 252-258.   DOI
11 Daniel, M.-C. and Astruc, D. (2004), "Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology", Chem. Rev., 104(1), 293-346.   DOI   ScienceOn
12 Dutilleul, M.C., Seisenbaeva, G. and Kessler, V.G. (2014), "Novel solvothermal approach to hydrophilic nanoparticles of late transition elements and its evaluation by nanoparticle tracking analysis", Adv. Nano Res., 2(2), 77-88.   DOI
13 Herrero, E., Buller, L.J. and Abruna, H.D. (2001), "Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials", Chem. Rev., 101(7), 1897-1930.   DOI   ScienceOn
14 Huang, X., El-Sayed, I. H., Qian, W., El-sayed, M.A. (2006), "Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods", J. Am. Chem. Soc., 128(6), 2115-2120.   DOI   ScienceOn
15 Jain, P.K., Lee, K.S., El-Sayed, I.H. and El-Sayed, M.A. (2006), "Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine", J. Phys. Chem. B, 110(14), 7238-7248.   DOI   ScienceOn
16 Jana, N.R., Gearheart, L. and Murphy, C.J. (2001), "Seed-Mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template", Adv. Mater., 13(18), 1389-1393.   DOI   ScienceOn
17 Kim, D.Y., Choi, K.W., Im, S.H., Park, O.O., Zhong, X.-L. and Li, Z.-Y. (2012), "One-pot synthesis of gold trisoctahedra with high-index facets", Adv. Mater. Res., 1(1), 1-12.   DOI
18 Jana, N.R., Gearheart, L. and Murphy, C.J. (2001), "Wet chemical synthesis of high aspect ratio cylindrical gold nanorods", J. Phys. Chem. B, 105(19), 4065-4067.
19 Jin, R., Cao, Y., Mirkin, C.A., Kelly, K.L., Schatz, G.C. and Zheng, J.G. (2001), "Photoinduced conversion of silver nanospheres to nanoprisms", Science, 294(5548), 1901-1903.   DOI   ScienceOn
20 Kenipp, K. (2007), "Surface-Enhanced Raman Scattering", Phys. Today, 60(11), 40.
21 Kim, D.Y., Choi, K.W., Zhong, X.-L., Li, Z.-Y., Im, S.H. and Park, O.O. (2013), "Au@Pd core-shell nanocubes with finely-controlled sizes", CrystEngComm, 15(17), 3385-3391.   DOI
22 Kim, D.Y., Im, S.H., Lim, Y.T. and Park, O.O. (2010), "Evolution of gold nanoparticles through Catalan, Archimedean, and Platonic solids", Cryst. Eng. Comm., 12(1), 116-121.   DOI
23 Kim, D.Y., Im, S.H. and Park, O.O. (2010), "Synthesis of tetrahexahedral gold nanocrystals with high-index facets", Cryst. Growth Des., 10(8), 3297-3834.   DOI
24 Kim, D.Y., Kang, S.W., Choi, K.W., Choi, S.W., Han, S.W., Im, S.H. and Park, O.O. (2013), "Au@Pd nanostructures with tunable morphologies and sizes and their enhanced electrocatalytic activity", Cryst. Eng. Comm., 15(35), 7113-7120.   DOI
25 Kim, D.Y., Li, W., Y. Ma, Yu, T., Li, Z.-Y., Park, O.O. and Xia, Y. (2011), "Seed-mediated synthesis of gold octahedra in high purity and with well-controlled sizes and optical properties", Chem. Eur. J., 17(17), 4759-4764.   DOI   ScienceOn
26 Li, J., Zheng, Y., Zeng, J. and Xia, Y. (2012), "Controlling the size and morphology of Au@Pd core-shell nanocrystals by manipulating the kinetics of seeded growth", Chem. Eur. J., 18(26), 8150-8156.   DOI
27 Kim, D.Y., Yu, T., Cho, E.C., Ma, Y., Park, O.O. and Xia, Y. (2011), "Synthesis of gold nano-hexapods with controllable arm lengths and their tunable optical properties", Angew. Chem. Int. Ed., 50(28), 6328-6331.   DOI
28 Kelly, K.L., Coronado, E., Zhao, L.L. and Schatz, G.C. (2003), "The optical properties of metal nanoparticle: The influence of size, shape, and dielectric environment", J. Phys. Chem. B, 107(3), 668-677.
29 LaMer, V.K. and Dinegar, R.H. (1950), "Theory, production and mechanism of formation of monodispersed hydrosols", J. Am. Chem. Soc., 72(11), 4847-4854.   DOI
30 Lim, B., Jiang, M., Yu, T., Camargo, P.H.C. and Xia, Y. (2010), "Nucleation and growth mechanisms for Pd-Pt bitmetallic nanodendrites and their electrocatalytic properties", Nano Res., 3(2), 69-80.   DOI
31 Lim, B. and Xia, Y. (2010), "Metal nanocrystals with highly branched morphologies", Angew. Chem. Int. Ed., 50(1), 76-85.
32 Lim, B., Xiong, Y. and Xia, Y. (2007), "A water-based synthesis of octahedral, decahedral, and icosahedral Pd nanocrystals", Angew. Chem. Int. Ed., 46(48), 9279-9282.   DOI
33 Lu, X., Rycenga, M. Skrabalak, S.E., Wiley, B. and Xia, Y. (2009), "Chemical synthesis of novel plasmonic nanoparticles", Annu. Rev. Phys. Chem., 60, 167-192.   DOI
34 Ma, Y., Zeng, J., Li, W., McKiernan, M., Xie, Z. and Xia, X. (2010), "Seed-Mediated synthesis of truncated gold decahedrons with a AuCl/oleylamine complex as precursor", Adv. Mater., 22(17), 1930-1934.   DOI
35 Orendorff, C.J. and Murphy, C.J. (2006), "Quantitation of metal content in the silver-assisted growth of gold nanorods", J.Phys. Chem. B, 110(9), 3990-3994.   DOI
36 Marks, L.D. (1994), "Experimental studies of small particle structures", Rep. Prog. Phys., 57(6), 603-649.   DOI
37 Murphy, C.J., Gole, A.M., Stone, J. W., Sisco, P.N., Alkilany, A.M., Goldsmith, E.C. and Baxter, S.C. (2008), "Gold nanoparticles in biology: beyond toxicity to cellular imaging", Acc. Chem. Res., 41(12), 1721-1730.   DOI   ScienceOn
38 Ni, C., Hassan, P.A. and Kaler, E.W. (2005), "Structural characteristics and growth of pentagonal silver nanorods prepared by a surfactant method", Langmuir, 21(8), 3334-3337.   DOI
39 Park, K.H, Im, S.H. and Park, O.O. (2011), "The size control of silver nanocrystals with different polyols and its application to low-reflection coating materials", Nanotechnology, 22(4), 045602(6pp).   DOI   ScienceOn
40 Peng, X., Wickham, J. and Alivisatos, A.P. (1998), "Kinetics of II-VI and III-V colloidal semiconductor nanocrystals growth: "Focusing" of size distribution", J. Am. Chem. Soc., 120(21), 5343-5344.   DOI   ScienceOn
41 Pimpinelli, A. and Villain, J. (1998), Physics of Crystal Growth, Cambridge University Press: Cambridge, UK.
42 Qiu, P. and Mao, C. (2009), "Seed-Mediated shape evolution of gold nanomaterials: from spherical nanoparticles to polycrystalline nanochains and single-crystalline nanowires", J. Nanopart. Res., 11(4), 885-894.   DOI
43 Rosi, N.L. and Mirkin, C.A. (2005), "Nanostructures in biodiagnostics", Chem. Rev., 105(4), 1547-1562.   DOI   ScienceOn
44 Seo, D., Park, J.C. and Song, H. (2006), "Polyhedral gold nanocrystals with $O_h$ symmetry: from octahedral to cubes", J. Am. Chem. Soc., 128(46), 14863-14870.   DOI   ScienceOn
45 Rycenga, M., Cobley, C. M., Zeng, J., Li, W., Moran, C. H., Zhang, Q., Qin, D. and Xia, Y. (2011), "Controlling the synthesis and assembly of silver nanostructures for plasmonic applications", Chem. Rev., 111(6), 3669-3712.   DOI   ScienceOn
46 Sau, T.K. and Murphy, C.J. (2004), "Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution", J. Am. Chem. Soc., 126(28), 8648-8649.   DOI   ScienceOn
47 Sau, T.K., Rogach, A.L., Jackel, F., Klar, T.A. and Feldmann, J. (2009), "Properties and applications of colloidal nonspherical noble metal nanoparticles", Adv. Mater., 22(16), 1805-1825.
48 Seo, D., Yoo, C.I., Chung, I.S., Park, S.M., Ryu, S. and Song, H. (2008), "Shape adjustment between multiply twinned and single-crystalline polyhedral gold nanocrystals: decahedra, icosahedra, and truncated tetrahedral", J. Phys. Chem. C, 112(7), 2469-2475.
49 Skrabalak, S.E., Chen, J., Sun, Y., Lu, X., Au, L., Cobley, C.M. and Xia, Y. (2008), "Gold nanocages: Synthesis, properties, and applications", Acc. Chem. Res., 41(12), 1587-1595.   DOI   ScienceOn
50 Somorjai, G.A. (1985), "Surface science and catalysis", Science, 227(4689), 902-908.   DOI
51 Sun, Y., Mayers, B., Herricks, T. and Xia, Y. (2003), "Polyol synthesis of uniform silver nanowires: A plausible growth mechanism and the supporting evidence", Nano Lett., 3(7), 955-960.   DOI   ScienceOn
52 Sun. Y., Mayers, B. and Xia, Y. (2003), "Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process", Nano Lett., 3(5), 675-679.   DOI   ScienceOn
53 Vicsek, T. (1992), Fractal Growth Phenomena, 2nd ed., World Scientific, Singapore.
54 Sun. Y. and Xia, Y. (2003), "Triangular nanoplates of silver: Synthesis, characterization, and use as sacrificial template for generating triangular nanorings of gold", Adv. Mater., 15(9), 695-699.   DOI
55 Tao, A.R., Habas, S. and Yang, P. (2008), "Shape control of colloidal metal nanocrystals", Small, 4(3), 310-325.   DOI   ScienceOn
56 Tian, N., Zhou, Z.-Y., Sun, S.-G., Ding, Y. and Wang, Z.L. (2007), "Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity", Science, 316(5825), 732-735.   DOI
57 Wang, D.H., Kim, D.Y., Choi, K.W., Seo, J.H., Im, S.H., Park, J.H., Park, O.O. and Heeger, A.J. (2011), "Enhancement of donor-acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles", Angew. Chem. Int. Ed., 50(24), 5519-5523.   DOI   ScienceOn
58 Wang, Y., Yan, B. and Chen, L. (2013), "SERS tags: Novel optical nanoprobes for bioanalysis", Chem. Rev., 113(3), 1391-1428.   DOI
59 Wang, Z.L. (2000), "Transmission electron microscopy of shape-controlled nanocrystals and their assemblies", J. Phys. Chem. B, 104(6), 1153-1175.   DOI   ScienceOn
60 Washio, I., Xiong, Y. and Xia, Y. (2006), "Reduction by the end groups of poly(vinyl pyrrolidone): A new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates", Adv. Mater., 18(13), 1745-1749.   DOI   ScienceOn
61 Wilcoxon, J.P. and Abrams, B.L. (2006), "Synthesis, structure and proeperties of metal nanoclusters", Chem. Soc. Rev., 35(11), 1162-1194.   DOI   ScienceOn
62 Xiong, Y., McLellan, J. M., Chen, J., Yin, Y., Li, Z.-Y. and Xia, Y. (2005), "Kinetically controlled synthesis of triangular and hexagonal nanoplates of palladium and their SPR/SERS properties", J. Am. Chem. Soc., 127(48), 17118-17127.   DOI
63 Wiley, B.J., Im, S.H., Li, Z.Y., McLellan, J., Siekkinen, A. and Xia, Y. (2006), "Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis", J. Phys. Chem. B, 110(32), 15666-15675.   DOI   ScienceOn
64 Xia, Y., Xiong, Y., Lim, B. and Skrabalak, S.E. (2009), "Shape-Controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics?", Angew. Chem. Int. Ed., 48(1), 60-103.   DOI   ScienceOn
65 Xiong, Y., Cai, H., Wiley, B.J., Wang, J., Kim, M.J. and Xia, Y. (2007), "Synthesis and mechanistic study of palladium nanobars and nanorods", 129(12), 3665-3675.   DOI
66 Xiong, Y., Siekkinen, A.R., Wang, J., Yin, Y., Kim, M.J. and Xia, Y. (2007) "Synthesis of silver nanoplates at high yields by slowing down the polyol reduction of silver nitrate with polyacrylamide", J. Mater. Chem., 17(25), 2600-2602   DOI
67 Xiong, Y., Wiley, B. J. and Xia, Y. (2007), "Nanocrystals with unconventional shapes- A class of promising catalyst", Angew. Chem. Int. Ed., 46(38), 7157-7159.   DOI
68 Xiong, Y. and Xia, Y. (2007), "Shape-Controlled synthesis of metal nanostructure: The case of palladium", Adv. Mater., 19(20), 3385-3391.   DOI   ScienceOn
69 Ye, S.J., Kim, D.Y., Kang, S.W., Choi, K.W., Han, S.W. and Park, O.O. (2014), "Synthesis of chestnut-bur-like palladium nanostructures and their enhanced electrocatalytic activities for ethanol oxidation", Nanoscale, 6(8), 4182-4187.   DOI