Browse > Article
http://dx.doi.org/10.3740/MRSK.2012.22.7.352

Synthesis and Photocatalytic Properties of SnO2-Mixed and Sn-Doped TiO2 Nanoparticles  

Choi, Hong-Goo (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST))
Yong, Seok-Min (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST))
Kim, Do-Kyung (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST))
Publication Information
Korean Journal of Materials Research / v.22, no.7, 2012 , pp. 352-357 More about this Journal
Abstract
$SnO_2$-mixed and Sn-doped $TiO_2$ nanoparticles were synthesized via a hydrothermal process. $SnO_2$-mixed $TiO_2$ nanoparticles prepared in a neutral condition consisted of anatase $TiO_2$ nanoparticles(diamond shape, ~25 nm) and cassiterite $SnO_2$ nanoparticles(spherical shape, ~10 nm). On the other hand, Sn-doped $TiO_2$ nanoparticles obtained under a high acidic condition showed a crystalline phase corresponding to rutile $TiO_2$. As the Sn content increased, the particle shape changed from rod-like(d~40 nm, 1~200 nm) to spherical(18 nm) with a decrease in the particle size. The peak shift in the XRD results and a change of the c-axis lattice parameter with the Sn content demonstrate that the $TiO_2$ in the rutile phase was doped with Sn. The photocatalytic activity of the $SnO_2$-mixed $TiO_2$ nanoparticles dramatically increased and then decreased when the $SnO_2$ content exceeded 4%. The increased photocatalytic activity is mainly attributed to the improved charge separation of the $TiO_2$ nanoparticles with the $SnO_2$. In the case of Sn-doped $TiO_2$ nanoparticles, the photocatalytic activity increased slightly with the Sn content due most likely to the larger energy bandgap caused by Sn-doping and the decrease in the particle size. The $SnO_2$-mixed $TiO_2$ nanoparticles generally exhibited higher photocatalytic activity than the Sn-doped $TiO_2$ nanoparticles. This was caused by the phase difference of $TiO_2$.
Keywords
$TiO_2$; $SnO_2$; nanoparticles; hydrothermal process; photocatalytic activity;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 N. I. Al-Salim, S. A. Bagshaw, A. Bittar, T. Kemmitt, A. J. McQuillan, A. M. Mills and M. J. Ryan, J. Mater. Chem., 10(10), 2358 (2000).   DOI   ScienceOn
2 A. R. Denton and N. W. Ashcroft, Phys. Rev., 43(6), 3161 (1991).   DOI   ScienceOn
3 H. Cheng, J. Ma, Z. Zhao and L. Qi, Chem. Mater., 7(4), 663 (1995).   DOI   ScienceOn
4 R. Su, R. Bechstein, L. So, R. T. Vang, M. Sillassen, B. Esbjornsson, A. Palmqvist and F. Besenbacher, J. Phys. Chem. C, 115(49), 24287 (2011).   DOI   ScienceOn
5 S. H. Jo, P. Muralidharan and D. K. Kim, Electrochem. Comm., 11(11), 2085 (2009).   DOI   ScienceOn
6 S. J. Lee, D. S. Kim, P. Muralidharan, S. H. Jo and D. K. Kim, J. Power Sourc., 196(6), 3095 (2011).   DOI   ScienceOn
7 J. S. Lee, K. H. You and C. B. Park, Adv. Mater., 24(8), 1084 (2012).   DOI   ScienceOn
8 K. Zhang, Z. D. Meng and W. C. Oh, Kor. J. Mater. Res., 20(3), 117 (2010).   DOI   ScienceOn
9 C. H. Cho, M. H. Han, D. H. Kim and D. K. Kim, Mater. Chem. Phys., 92(1), 104 (2005).   DOI   ScienceOn
10 C. H. Cho, D. K. Kim and D. H. Kim, J. Am. Ceram. Soc., 86(7), 1138 (2003).   DOI   ScienceOn
11 S. H. Cho and S. W. Lee, Kor. J. Mater. Res., 21(2), 83 (2011) (in Korean).   DOI   ScienceOn
12 J. S. Im, S. K. Lee and Y. S. Lee, Appl. Surf. Sci., 257(6), 2164 (2011).   DOI   ScienceOn
13 E. D. Spoerke, M. T. Lloyd, E. M. McCready, D. C. Olson, Y. J. Lee and J. W. P. Hsu, Appl. Phys. Lett., 95, 213506 (2009).   DOI   ScienceOn
14 A. J. Nozik, Appl. Phys. Lett., 30(11), 567 (1977).   DOI
15 K. R. Gopidas, M. Bohorquez and P. V. Kamat, J. Phys. Chem., 94(16), 6435 (1990).   DOI
16 S. Hotchandani and P. V. Kamat, J. Phys. Chem., 96(16), 6834 (1992).   DOI
17 P. V. Kamat and B. Patrick, J. Phys. Chem., 96(16), 6829 (1992).   DOI
18 J. Rabani, J. Phys. Chem., 93(22), 7707 (1989).   DOI
19 L. Spanhel, H. Weller and A. Henglein, J. Am. Chem. Soc., 109(22), 6632 (1987).   DOI
20 J. Li, D. Wang, H. Liu and Z. Zhu, Mater. Manuf. Process., 27(6), 631 (2012).   DOI
21 H. W. Lee, P. Muralidharan, R. Ruffo, C. M. Mari, Y. Cui and D. K. Kim, Nano Letters, 10(10), 3852 (2010).   DOI   ScienceOn
22 I. Gur, Science, 310(5754), 1618 (2005).   DOI
23 S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Gratzel, M. K. Nazeeruddin and M. Gratzel, Thin Solid Films, 516(14), 4613 (2008).   DOI   ScienceOn
24 D. K. Kim, P. Muralidharan, H. W. Lee, R. Ruffo, Y. Yang, C. K. Chan, H. Peng, R. A. Huggins and Y. Cui, Nano Letters, 8(11), 3948 (2008).   DOI   ScienceOn