DOI QR코드

DOI QR Code

Flow Characteristics of Al2O3 Nanofluids with Nanoparticles of Various Shapes

나노입자 형상 변화에 따른 알루미나 나노유체의 유동 특성

  • Hwang, Kyo-Sik (School of Aerospace and Mechanical Engineering, Korea Aerospace Univ.) ;
  • Ha, Hyo-Jun (School of Aerospace and Mechanical Engineering, Korea Aerospace Univ.) ;
  • Jang, Seok-Pil (School of Aerospace and Mechanical Engineering, Korea Aerospace Univ.)
  • 황교식 (한국항공대학교 항공우주 및 기계공학부) ;
  • 하효준 (한국항공대학교 항공우주 및 기계공학부) ;
  • 장석필 (한국항공대학교 항공우주 및 기계공학부)
  • Received : 2010.10.22
  • Accepted : 2010.11.16
  • Published : 2011.03.01

Abstract

To study the flow characteristics of water-based $Al_2O_3$ nanofluids according to the shape of the nanoparticles, we measure the pressure drop in a fully developed laminar flow regime. Water-based $Al_2O_3$ nanofluids of 0.3 Vol.% with sphere-, rod-, platelet-, and brick-shaped nanoparticles are manufactured by the two-step method. Zeta potential is measured to examine the suspension and dispersion characteristics, and TEM image is considered to confirm the shape characteristics of the nanoparticles. The experimental results show that the pressure drop of $Al_2O_3$ nanofluids depends on the shape of the nanoparticles although the nanofluids has same volume fraction of nanoparticles. This is explained by the surface area per unit mass of the nanoparticles and the size of the nanoparticles suspended in the base fluids.

본 연구에서는 다양한 형상의 나노입자를 분산시킨 알루미나 나노유체의 유동 특성을 실험적으로 조사하기 위하여 나노입자의 형상 변화에 따른 알루미나 나노유체의 압력강하를 층류영역에서 측정하였다. 이를 위해 Sphere, Rod, Platelet, 그리고 Brick 의 형태를 갖는 알루미나 나노입자를 물에 분산시켜 부피비 0.3%를 갖도록 Two-step 방법으로 제작하였다. 제작된 나노유체의 분산성을 파악하기 위하여 제타포텐셜을 조사하였으며, 나노입자의 형상을 파악하기 위하여 TEM 사진을 측정하였다. 다양한 형상의 나노입자를 분산시켜 0.3%의 부피비를 갖는 나노유체의 압력강하를 측정하였을 때, 입자 형상이 나노유체의 유동특성에 영향을 미치는 것을 확인하였다. 실험 결과를 바탕으로 나노입자의 단위질량당 표면적과 분산된 나노입자의 크기를 이용하여 나노유체의 압력강하 특성을 설명하였다.

Keywords

References

  1. Eastman, J.A., Choi, S.U.S., Li, S. and Thompson, L.J., 1997, “Enhanced Thermal Conductivity through the Development of Nanofluids,” Proc. Symp. Nanophase and Nanocomposite Mater. II, Vol. 457, pp. 2-11.
  2. Lee, S., Choi, S.U.S. and Eastman, J.A., 1999, “Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles,” ASME J. Heat Transfer, Vol. 121, pp. 280-289. https://doi.org/10.1115/1.2825978
  3. Wang, X., Xu, X. and Choi, S.U.S, 1999, “Thermal Conductivity of Nanoparticle-Fluid Mixture,” J. Thermophysics and Heat Transfer, Vol. 13, pp. 474-480. https://doi.org/10.2514/2.6486
  4. Xie, H.Q., Wang, J.C., Xi, T.G., Liu, Y., Ai, F. and Wu, Q.R., 2002, “Thermal, Conductivity Enhancement of Suspensions Containing Nanosized Alumina Particles,” Journal of Applied Physics, Vol. 91, pp. 4568-4572. https://doi.org/10.1063/1.1454184
  5. Das, S.K. and Putra, N., 2003, Thiesen, P., Roetzel, W., “Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids,” ASME J. Heat Transfer, Vol. 125, pp. 567-574. https://doi.org/10.1115/1.1571080
  6. Patel, H.E., Das, S.K., Sundararajan, T., Nair, A.S., George, B. and Pradeep, T., 2003, “Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticle Base Nanofluids Manifestation of Anomalous Enhancement and Chemical Effects,” Appl. Phys. Lett., Vol. 83, pp. 2931-2933. https://doi.org/10.1063/1.1602578
  7. Jang, S.P. and Choi, S.U.S., 2004, “Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids,” Appl. Phys. Lett., Vol. 84, pp.4316-4318. https://doi.org/10.1063/1.1756684
  8. Wen, D. and Ding, Y., 2004, “Experimental Investigation into Convective Heat Transfer of Nanofluid at the Entrance Region Under Laminar Flow Conditions,” Int. J. Heat Mass Transfer, Vol. 47, pp. 5181-5188. https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.012
  9. Ding, Y., Alias, H., Wen, D. and Williams, R.A., 2006, “Heat Transfer of Aqueous Suspensions of Carbon Nanotubes (CNT Nanofluids),” Int. J. Heat Mass Transfer, Vol. 49, pp. 240-250. https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.009
  10. Buongiorno, J., 2006, “Convective Transport in Nanofluids,” ASME J. Heat Transfer, Vol. 128, pp. 240-250. https://doi.org/10.1115/1.2150834
  11. Hwang, K.S., Jang, S.P. and Choi, S.U.S., 2009, “Flow and Convective Heat Transfer Characteristics of Water-Based $Al_2O_3$ Nanofluids in Fully Developed Laminar Flow Regime,” International Journal of Heat and Mass Transfer, Vol. 52, pp. 193-199. https://doi.org/10.1016/j.ijheatmasstransfer.2008.06.032
  12. He, Y., Jin, Y., Chen, H., Ding, Y., Cang, D. and Lu, H., 2007, “Heat Transfer and Flow Behaviour of Aqueous Suspensions of TiO_2$ Nanoparticles (Nanofluids) Flowing Upward Through a Vertical Pipe,” Inter-national Journal of Heat and Mass Transfer, Vol. 50, pp. 2272-2281. https://doi.org/10.1016/j.ijheatmasstransfer.2006.10.024
  13. Heris, S.Z., Esfahany, M.N. and Etemad, S.G., 2007, “Experimental Investigation of Convective Heat Transfer of $Al_2O_3$ /Water Nanofluid in Circular Tube,” International Journal of Heat and Fluid Flow, Vol. 28, pp. 203-210. https://doi.org/10.1016/j.ijheatfluidflow.2006.05.001
  14. Pak, B.C. and Cho, Y.I., 1998, “Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particle,” Experimental Heat Transfer, Vol. 11, pp. 151-170. https://doi.org/10.1080/08916159808946559
  15. Xuan, Y. and Li, Q., 2003, “Investigation on Convective Heat Transfer and Flow Features of Nanofluids,” ASME J. Heat Transfer, Vol. 125, pp. 151-155. https://doi.org/10.1115/1.1532008
  16. Duangthongsuk, W. and Wongwises, S., 2009, “Heat Transfer Enhancement and Pressure Drop Characteristics of TiO2–Water Nanofluid in a Double-Tube Counter Flow Heat Exchanger,” International Journal of Heat and Mass Transfer, Vol. 52, pp. 2059-2067. https://doi.org/10.1016/j.ijheatmasstransfer.2008.10.023
  17. Rea, U., McKrell, T. and Hu, L., Buongiorno, J., 2009, “Laminar Convective Heat Transfer and Viscous Pressure Loss of Alumina–Water and Zirconia–Water Nanofluids,” International Journal of Heat and Mass Transfer, Vol. 52, pp. 2042-2048. https://doi.org/10.1016/j.ijheatmasstransfer.2008.10.025
  18. Williams, W., Buongiorno, J. and Hu, L., 2008, “Experimental Investigation of Turbulent Convective Heat Transfer and Pressure Loss of Alumina/Water and Zirconia/Water Nanoparticle Colloids (Nanofluids) in Horizontal Tubes,” Journal of Heat Transfer, Vol. 130, pp. 042412. https://doi.org/10.1115/1.2818775
  19. Lee, J.H., Hwang, K.S., Jang, S.P., Lee, B.H., Kim, J.H., Choi, S.U.S. and Choi, C.J., 2008, “Effective Viscosities and Thermal Conductivities of Aqueous Nanofluids Containing Low Volume Concentrations of $Al_2O_3$ Nanoparticles,” International Journal of Heat and Mass Transfer, Vol. 51, pp. 2651-2656. https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.026
  20. Muller R.H., 1996, “Zetapotential und Partikelladung in der Laborpraxis,” 1st Ed., Stuttgart: Wissenschaftliche Verlagsgesellschaft.
  21. Probstein, R.F., 2003, “Physicochemical Hydrodynamics,” 2nd Ed., Wiley.
  22. Xuan, Y. and Roetzel, W., 2000, “Conceptions for Heat Transfer Correlation of Nanofluids,” Int. J. Heat Mass Transfer, Vol. 43, pp. 3701-3707. https://doi.org/10.1016/S0017-9310(99)00369-5
  23. Bott, T.R., 1995, “Fouling of Heat Exchangers,” Elsevier, New York.
  24. Lister, D.H., 1980, “Corrosion Products in Power Generating Systems,” AECL-6877, June.
  25. Whitmore, P.J. and Meisen, A., 1977, “Estimation of Thermo- and Diffusiophoretic Particle Deposition,” Can. J. Chem. Eng., Vol. 55, pp. 279-285. https://doi.org/10.1002/cjce.5450550307