• Title/Summary/Keyword: Nanoceramic

Search Result 18, Processing Time 0.023 seconds

Atomic layer chemical vapor deposition of Zr $O_2$-based dielectric films: Nanostructure and nanochemistry

  • Dey, S.K.
    • Electrical & Electronic Materials
    • /
    • v.16 no.9
    • /
    • pp.64.2-65
    • /
    • 2003
  • A 4 nm layer of ZrOx (targeted x-2) was deposited on an interfacial layer(IL) of native oxide (SiO, t∼1.2 nm) surface on 200 mm Si wafers by a manufacturable atomic layer chemical vapor deposition technique at 30$0^{\circ}C$. Some as-deposited layers were subjected to a post-deposition, rapid thermal annealing at $700^{\circ}C$ for 5 min in flowing oxygen at atmospheric pressure. The experimental x-ray diffraction, x-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and high-resolution parallel electron energy loss spectroscopy results showed that a multiphase and heterogeneous structure evolved, which we call the Zr-O/IL/Si stack. The as-deposited Zr-O layer was amorphous $ZrO_2$-rich Zr silicate containing about 15% by volume of embedded $ZrO_2$ nanocrystals, which transformed to a glass nanoceramic (with over 90% by volume of predominantly tetragonal-$ZrO_2$(t-$ZrO_2$) and monoclinic-$ZrO_2$(m-$ZrO_2$) nanocrystals) upon annealing. The formation of disordered amorphous regions within some of the nanocrystals, as well as crystalline regions with defects, probably gave rise to lattice strains and deformations. The interfacial layer (IL) was partitioned into an upper Si $o_2$-rich Zr silicate and the lower $SiO_{x}$. The latter was sub-toichiometric and the average oxidation state increased from Si0.86$^{+}$ in $SiO_{0.43}$ (as-deposited) to Si1.32$^{+}$ in $SiO_{0.66}$ (annealed). This high oxygen deficiency in $SiO_{x}$ indicative of the low mobility of oxidizing specie in the Zr-O layer. The stacks were characterized for their dielectric properties in the Pt/{Zr-O/IL}/Si metal oxide-semiconductor capacitor(MOSCAP) configuration. The measured equivalent oxide thickness (EOT) was not consistent with the calculated EOT using a bilayer model of $ZrO_2$ and $SiO_2$, and the capacitance in accumulation (and therefore, EOT and kZr-O) was frequency dispersive, trends well documented in literature. This behavior is qualitatively explained in terms of the multi-layer nanostructure and nanochemistry that evolves.ves.ves.

  • PDF

The effect of light sources and CAD/CAM monolithic blocks on degree of conversion of cement

  • Cetindemir, Aydan Boztuna;Sermet, Bulent;Ongul, Deger
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.4
    • /
    • pp.291-299
    • /
    • 2018
  • PURPOSE. To assess the degree of conversion (DC) and light irradiance delivered to light-cured and dual-cured cements by application of different light sources through various types of monolithic computer-aided design and computer-aided manufacturing (CAD/CAM) materials. MATERIALS AND METHODS. RelyX Ultimate Clicker light-cured and dual-cured resin cement specimens with 1.5-mm thicknesses (n=300, 10/group), were placed under four types of crystalline core structure (Vita Enamic, Vita Suprinity, GC Ceresmart, Degudent Prettau Anterior). The specimens were irradiated for 40 seconds with an LED Soft-Start or pulse-delay unit or 20 seconds with a QTH unit. DC ratios were determined by using Fourier transform infrared spectroscopy (FTIR) after curing the specimen at 1 day and 1 month. The data were analyzed using the Mann-Whitney U test (for paired comparison) and the Kruskal-Wallis H test (for multiple comparison), with a significance level of P<.05. RESULTS. DC values were the highest for RelyX Ultimate Clicker light-cure specimens polymerized with the LED Soft-Start unit. The combination of the Vita Suprinity disc and RelyX Ultimate Clicker dual-cure resin cement yielded significantly higher values at both timepoints with all light units (all, P<.05). CONCLUSION. Within the limitations of this study, we conclude that the DC of RelyX Ultimate Clicker dual-cure resin cement was improved significantly by the use of Vita Suprinity and the LED Soft-Start light unit. We strongly recommend the combined use of an LED light unit and dual-cure luting cement for monolithic ceramic restorations.

Effect of surface treatments and universal adhesive application on the microshear bond strength of CAD/CAM materials

  • Sismanoglu, Soner;Gurcan, Aliye Tugce;Yildirim-Bilmez, Zuhal;Turunc-Oguzman, Rana;Gumustas, Burak
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.1
    • /
    • pp.22-32
    • /
    • 2020
  • PURPOSE. The aim of this study was to evaluate the microshear bond strength (µSBS) of four computer-aided design/computer-aided manufacturing (CAD/CAM) blocks repaired with composite resin using three different surface treatment protocols. MATERIALS AND METHODS. Four different CAD/CAM blocks were used in this study: (1) flexible hybrid ceramic (FHC), (2) resin nanoceramic (RNC), (c) polymer infiltrated ceramic network (PICN) and (4) feldspar ceramic (FC). All groups were further divided into four subgroups according to surface treatment: control, hydrofluoric acid etching (HF), air-borne particle abrasion with aluminum oxide (AlO), and tribochemical silica coating (TSC). After surface treatments, silane was applied to half of the specimens. Then, a silane-containing universal adhesive was applied, and specimens were repaired with a composite, Next, µSBS test was performed. Additional specimens were examined with a contact profilometer and scanning electron microscopy. The data were analyzed with ANOVA and Tukey tests. RESULTS. The findings revealed that silane application yielded higher µSBS values (P<.05). All surface treatments were showed a significant increase in µSBS values compared to the control (P<.05). For FHC and RNC, the most influential treatments were AlO and TSC (P<.05). CONCLUSION. Surface treatment is mandatory when the silane is not preferred, but the best bond strength values were obtained with the combination of surface treatment and silane application. HF provides improved bond strength when the ceramic content of material increases, whereas AlO and TSC gives improved bond strength when the composite content of material increases.

Microtensile bond strength and micromorphologic analysis of surface-treated resin nanoceramics

  • Park, Joon-Ho;Choi, Yu-Sung
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.4
    • /
    • pp.275-284
    • /
    • 2016
  • PURPOSE. The aim of this study was to evaluate the influence of different surface treatment methods on the microtensile bond strength of resin cement to resin nanoceramic (RNC). MATERIALS AND METHODS. RNC onlays (Lava Ultimate) (n=30) were treated using air abrasion with and without a universal adhesive, or HF etching followed by a universal adhesive with and without a silane coupling agent, or tribological silica coating with and without a universal adhesive, and divided into 6 groups. Onlays were luted with resin cement to dentin surfaces. A microtensile bond strength test was performed and evaluated by one-way ANOVA and Tukey HSD test (${\alpha}$=.05). A nanoscratch test, field emission scanning electron microscopy, and energy dispersive X-ray spectroscopy were used for micromorphologic analysis (${\alpha}$=.05). The roughness and elemental proportion were evaluated by Kruskal-Wallis test and Mann-Whitney U test. RESULTS. Tribological silica coating showed the highest roughness, followed by air abrasion and HF etching. After HF etching, the RNC surface presented a decrease in oxygen, silicon, and zirconium ratio with increasing carbon ratio. Air abrasion with universal adhesive showed the highest bond strength followed by tribological silica coating with universal adhesive. HF etching with universal adhesive showed the lowest bond strength. CONCLUSION. An improved understanding of the effect of surface treatment of RNC could enhance the durability of resin bonding when used for indirect restorations. When using RNC for restoration, effective and systemic surface roughening methods and an appropriate adhesive are required.

Wear evaluation of CAD-CAM dental ceramic materials by chewing simulation

  • Turker, Izim;Kursoglu, Pinar
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.5
    • /
    • pp.281-291
    • /
    • 2021
  • PURPOSE. To evaluate the wear of computer-aided design/computer-aided manufacturing (CAD-CAM) dental ceramic materials opposed by enamel as a function of increased chewing forces. MATERIALS AND METHODS. The enamel cusps of healthy human third molar teeth (n = 40) opposed by materials from CAD-CAM dental ceramic groups (n = 10), including Vita Enamic® (ENA), a polymer-infiltrated ceramic network (PICN); GC Cerasmart® (CERA), a resin nanoceramic; Celtra® Duo (DUO), a zirconia-reinforced lithium silicate (ZLS) ceramic; and IPS e.max ZirCAD (ZIR), a polycrystalline zirconia, were exposed to chewing simulation (1,200,000 cycles; 120 N load; 1 Hz frequency; 0.7 mm lateral and 2 mm vertical motion). The wear of both enamel cusps and materials was quantified using a 3D laser scanner, and the wear mechanisms were evaluated by scanning electron microscopy (SEM). The results were analysed using Welch ANOVA and Kruskal Wallis test (α = .05). RESULTS. ZIR showed lower volume loss (0.02 ± 0.01 mm3) than ENA, CERA and DUO (P = .001, P = .018 and P = .005, respectively). The wear of cusp/DUO [0.59 mm3 (0.50-1.63 mm3)] was higher than cusp/CERA [0.17 mm3 (0.04-0.41 mm3)] (P = .007). ZIR showed completely different wear mechanism in SEM. CONCLUSION. Composite structured materials such as PICN and ZLS ceramic exhibit more abrasive effect on opposing enamel due to their loss against wear, compared to uniform structured zirconia. The resin nano-ceramic causes the lowest enamel wear thanks to its flexible nano-ceramic microstructure. While zirconia appears to be an enamel-friendly material in wear volume loss, it can cause microstructural defects of enamel.

Effect of surface treatments on the bond strength of indirect resin composite to resin matrix ceramics

  • Celik, Ersan;Sahin, Sezgi Cinel;Dede, Dogu Omur
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.4
    • /
    • pp.223-231
    • /
    • 2019
  • PURPOSE. The purpose of this study was to evaluate the shear bond strength (SBS) of an indirect resin composite (IRC) to the various resin matrix ceramic (RMC) blocks using different surface treatments. MATERIALS AND METHODS. Ninety-nine cubic RMC specimens consisting of a resin nanoceramic (RNC), a polymer-infiltrated hybrid ceramic (PIHC), and a flexible hybrid ceramic (FHC) were divided randomly into three surface treatment subgroups (n = 11). In the experimental groups, untreated (Cnt), tribochemical silica coating (Tbc), and Neodymium-Doped Yttrium Aluminum Garnet (Nd:YAG) laser irradiation (Lsr) with 3 W (150 mJ/pulse, 20 Hz for 20 sec.) were used as surface treatments. An indirect composite resin (IRC) was layered with a disc-shape mold ($2{\times}3mm$) onto the treated-ceramic surfaces and the specimens submitted to thermal cycling (6000 cycles, $5-55^{\circ}C$). The SBS test of specimens was performed using a universal testing machine and the specimens were examined with a scanning electron microscope to determine the failure mode. Data were statistically analyzed with two-way analysis of variance (ANOVA) and Tukey HSD test (${\alpha}=.05$). RESULTS. According to the two-way ANOVA, only the surface treatment parameter was statistically significant (P<.05) on the SBS of IRC to RMC. The SBS values of Lsr-applied RMC groups were significantly higher than Cnt groups for each RMC material, (P<.05). Significant differences were also determined between Tbc surface treatment applied and untreated (Cnt) PIHC materials (P=.039). CONCLUSION. For promoting a reliable bond strength during characterization of RMC with IRC, Nd:YAG laser or Tbc surface treatment technique should be used, putting in consideration the microstructure and composition of RMC materials and appropriate parameters for each material.

Effect of barium silicate filler content on mechanical properties of resin nanoceramics for additive manufacturing

  • Won, Sun;Ko, Kyung-Ho;Park, Chan-Jin;Cho, Lee-Ra;Huh, Yoon-Hyuk
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.5
    • /
    • pp.315-323
    • /
    • 2022
  • PURPOSE. The purpose of this study was to investigate the effect of barium silicate filler contents on mechanical properties of resin nanoceramics (RNCs) for additive manufacturing (AM). MATERIALS AND METHODS. Additively manufactured RNC specimens were divided into 4 groups depending on the content of ceramic fillers and polymers: 0% barium silicate and 100% polymer (B0/P10, control group); 50% barium silicate and 50% polymer (B5/P5); 60% barium silicate and 40% polymer (B6/P4); 67% barium silicate and 33% polymer (B6.7/P3.3). The compressive strength (n = 15) and fracture toughness (n = 12) of the specimens were measured, and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) analyses were performed. Independent sample Kruskal-Wallis tests were performed on the compressive strength and fracture toughness test results, and the significance of each group was analyzed at the 95% confidence interval through post-tests using the Bonferroni's method. RESULTS. B6/P4 and B6.7/P3.3 exhibited much higher yield strength than B0/P10 and B5/P5 (P < .05). Compared to the control group (B0/P10), the other three groups exhibited higher ultimate strength (P < .05). The fracture toughness of B6/P4 and B6.7/P3.3 were similar (P > .05). The content of barium silicate and fracture toughness showed a positive correlation coefficient (R = 0.582). SEM and EDS analyses revealed the presence of an oval-shaped ceramic aggregate in B6/P4 specimens, whereas the ceramic filler and polymer substrate were homogeneously mixed in B6.7/P3.3. CONCLUSION. Increasing the ceramic filler content improves the mechanical properties, but it can be accompanied by a decrease in the flowability and the homogeneity of the slurry.

Effect of the type of resin cement on the fracture resistance of chairside CAD-CAM materials after aging

  • Laura Vitoria Rizzatto;Daniel Meneghetti;Marielle Di Domenico;Julia Cadorin Facenda;Katia Raquel Weber;Pedro Henrique Corazza;Marcia Borba
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.3
    • /
    • pp.136-144
    • /
    • 2023
  • PURPOSE. The study objective was to evaluate the influence of the type of resin cement on the flexural strength and load to fracture of two chairside CADCAM materials after aging. MATERIALS AND METHODS. A polymer-infiltrated ceramic network (PICN) and a nanoceramic resin (RNC) were used to produce the specimens. Two types of dual-cure resin cements, a self-adhesive and a universal, were investigated. Bilayer specimens were produced (n = 10) and aged for 6 months in a humid environment before the biaxial flexural strength test (σf). Bonded specimens were subjected to a mechanical aging protocol (50 N, 2 Hz, 37℃ water, 500,000 cycles) before the compressive load test (Lf). σf and Lf data were analyzed using two-way ANOVA and Tukey tests (α = .05). Chi-square test was used to analyze the relationship between failure mode and experimental group (α = .05). RESULTS. The type of resin cement and the interaction between factors had no effect on the σf and Lf of the specimens, while the type of restorative material was significant. RNC had higher σf and Lf than PICN. There was a significant association among the type of cracks identified for specimens tested in Lf and the restorative material. CONCLUSION. The type of resin cement had no effect on the flexural strength and load to fracture of the two investigated CAD-CAM chairside materials after aging.