• Title/Summary/Keyword: Nano-wrinkle

Search Result 27, Processing Time 0.029 seconds

Water and Oil Repellency of Wool Fabric Treated with Nano-type Finishing Agent (Wool 직물의 나노 발수 발유가공)

  • Choi, Bo-Ryun;Han, Sam-Sook;Lee, Mun-Cheul
    • Textile Coloration and Finishing
    • /
    • v.20 no.6
    • /
    • pp.26-34
    • /
    • 2008
  • Wool fabric having high moisture content were treated with fluorocarbon-based water and oil repellent finishing agents by pad-dry-cure system. Three types of finishing agents which were regular-type or nano-type were adapted to compare the surface chemical composition, water and oil repellent property, crease recovery angle, and durability to repeated laundering. From the surface chemical compositions resulted by ESCA and C1s curve-fitting, it was shown that the regular-type finishing agent were easily taken off from the finished wool fabrics after repeated laundering. On the other hand, the fluoroalkyl groups of nano-type finishing agents turned round from fabric surface to fiber internal after repeated laundering. The water repellency of the wool fabrics treated with regular-type agent had a little changes according to the treatment condition changes and sharply decreased with repeated laundering. However, these values when treated with nano-type agents increased with the concentration and cure temperature and were maintained after 20 times laundering. The wool fabrics treated with nano-type agent had a great oil repellency irrespective of treatment conditions. Furthermore, the wrinkle recovery values of the wool fabrics treated with nano-type agents were higher than those of the fabrics treated with regular-type agent and were unchanged after 20 times laundering.

Pectin Micro- and Nano-capsules of Retinyl Palmitate as Cosmeceutical Carriers for Stabilized Skin Transport

  • Ro, Jieun;Kim, Yeongseok;Kim, Hyeongmin;Park, Kyunghee;Lee, Kwon-Eun;Khadka, Prakash;Yun, Gyiae;Park, Juhyun;Chang, Suk Tai;Lee, Jonghwi;Jeong, Ji Hoon;Lee, Jaehwi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.1
    • /
    • pp.59-64
    • /
    • 2015
  • Retinyl palmitate (RP)-loaded pectinate micro- and nano-particles (PMP and PNP) were designed for stabilization of RP that is widely used as an anti-wrinkle agent in anti-aging cosmeceuticals. PMP/PNP were prepared with an ionotropic gelation method, and anti-oxidative activity of the particles was measured with a DPPH assay. The stability of RP in the particles along with pectin gel and ethanolic solution was then evaluated. In vitro release and skin permeation studies were performed using Franz diffusion cells. Distribution of RP in each skin tissue (stratum corneum, epidermis, and dermis) was also determined. PMP and PNP could be prepared with mean particle size diameters of $593{\sim}843{\mu}m$ (PMP) and 530 nm (i.e., $0.53{\mu}m$, PNP). Anti-oxidative activity of PNP was greater than PMP due largely to larger surface area available for PNP. The stability of RP in PMP and PNP was similar but much greater than RP in pectin bulk gels and ethanolic solution. PMP and PNP showed the abilities to constantly release RP and it could be permeated across the model artificial membrane and rat whole skin. RP was serially deposited throughout the skin layers. This study implies RP loaded PMP and PNP are expected to be advantageous for improved anti-wrinkle effects.

Large Area Deposition of Biomimetic Polydopamine-Graphene Oxide Hybrids using Langmuir-Schaefer Technique (랭뮤어-쉐퍼 기법 이용 생체모사 폴리도파민-산화그래핀 복합체 대면적 적층 기법 연구)

  • Kim, Tae-Ho;Song, Seok Hyun;Jo, Kyung-Il;Koo, Jaseung
    • Journal of Adhesion and Interface
    • /
    • v.20 no.3
    • /
    • pp.110-115
    • /
    • 2019
  • Graphene oxide has been gathering interests as a way to exfoliate graphene. Since the oxidation group of graphene oxide can hydrogen bond with various functional groups, tremendous efforts have been actively conducted to apply various applications. However, graphene oxide alone cannot substantially possess the mechanical properties required for the practical application. Therefore, in this study, polydopamine, which is a bio-mimetic mussel protein-inspired material, was combined with graphene oxide to form a large-area composite membrane at the liquid-gas interface. In addition, the morphology of the polydopamine-graphene oxide composite thin film was also controlled to obtain a composite membrane having a nano-wrinkle structure. It can be expected to be used in the next generation seawater desalination membranes or carbon composites because it can form mechanically superior and sophisticated nanostructures.

Antioxidant and Antiaging Activities of Complex Supercritical Fluid Extracts from Dendropanax morbifera, Corni fructus and Lycii Fructus (황칠나무, 산수유, 구기자 복합 초임계유체추출물의 항산화 및 항노화 효과)

  • Shin, Dong-Chul;Kim, Gwui-Cheol;Song, Si-Young;Kim, Hee-Jin;Yang, Jae-Chan;Kim, Bo-Ae
    • The Korea Journal of Herbology
    • /
    • v.28 no.6
    • /
    • pp.95-100
    • /
    • 2013
  • Objectives : The purpose of this study was to investigate antiaging and antioxidant effects on cultured human skin fibroblast with supercritical fluid extracts of Dendropanax morbifera, Corni fructus and Lycii Fructus. Methods : Supercritical fluid extraction (SFE) technique was applied to extract from three medicinal plants including stem of Dendropanax morbifera, Corni fructus and Lycii Fructus. Antioxidant activity of extract was evaluated by two different assays as 2,2-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and super oxide dismutase (SOD) like activities. These extracts were tested for cell viability on HS68 skin fibroblast by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay. We investigated the effects of Ultraviolet-B irradiation on cytotoxicity, type 1 collagen, elastin level and oxidative damage in cultured human skin fibroblast (HS68). Recently, many studies have reported that elastin is also involved in inhibiting or repairing wrinkle formation, although collagen is a major factor in the skin wrinkle formation. Results : The extracts obtained dose-dependently increased the scavenging activity on DPPH radical scavenging activity and SOD like activity. The supercritical fluid extracts of complex herbal medicine showed low cytotoxicity as more than 100% cell viability in 100ppm/ml concentration. HS68 fibroblasts were survived 70% at $120mJ/cm^2$ UVB irradiation and treated tumor necrosis factor (TNF)-alpha. The levels of aging factors and cytotoxicity were decreased by supercritical fluid extract of complex herbal medicine. Conclusions : These results suggest that supercritical fluid extracts may have value as the potential antioxidant and antiaging medicinal plant.

Preparation of Nano Flexible Vesicles Encapsulating Adenosine and Composition Optimization by Taguchi Method (아데노신을 포집한 나노 플렉시블 베시클 제조 및 다구찌 방법에 의한 조성의 최적화)

  • Lee, Seo Young;Jin, Byung Suk
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.487-492
    • /
    • 2019
  • Nano flexible vesicles encapsulating an adenosine, an active ingredient for anti-wrinkle, were prepared for the transdermal delivery. The nano flexible vesicle is usually composed of phospholipid, ethanol, and lysolecithin, which is a type of liquid crystalline one made by dispersing the liquid crystalline phase formed through a hydration process into a water phase. In this study, the Taguchi method, one of the experimental design methods, was applied to investigate the factors affecting the vesicle droplet size. Signal to noise (S/N) ratios for the smaller the better characteristics of vesicle droplet size were calculated using the Taguchi orthogonal array. The composition of ethanol and lysolecithin in the vesicle constituents and the amount of aqueous solution added in the hydration process were main factors that had a great effect on the vesicle droplet size and ANOVA test showed that these factors were significant at 95% confidence level.

Preparation and Property of Flexible/Stretchable Electrodes (유연성/신축성 전극의 제조 및 특성)

  • Lee, Gi-Bbeum;Nah, Changwoon
    • Elastomers and Composites
    • /
    • v.47 no.4
    • /
    • pp.272-281
    • /
    • 2012
  • Flexible/stretchable electronics have recently focused, since their applications extend to emerging flexible displays, sensors, dielectric elastomer actuator and generators, and smart surgical tools. Flexible/stretchable electrodes should be synchronized with employing mechanical deformations of either flexing or stretching modes. Thus, the research area is one of the tough subjects, since the electrodes should keep their basic functions of electrodes under various mode of mechanical deformations. In this review, we discuss the recent development in the preparation and properties of such flexible/stretchable electrodes.

Construction of sports engineering structures with high resistance to improve the quality of sports training

  • Lin He;Qiyuan Deng
    • Structural Engineering and Mechanics
    • /
    • v.86 no.2
    • /
    • pp.211-220
    • /
    • 2023
  • The textile industry has benefited from nanotechnology in various fields of application as the use of nanomaterials, and nanotechnology is multiplying. Nanoparticles can increase the performance of textiles by up to 100 times when used in finishing, coating, and dyeing techniques, providing them with capabilities they did not previously possess. Nanotechnology is used in the textile chemical industry to produce sports mats with stain resistance, flame resistance, wrinkle resistance, moisture management, antimicrobial quality, and UV protection. The incorporation of nanomaterials into fabrics can have a significant effect on their properties, including shrinkage, strength, electrical conductivity, and flammability. Various inventions and innovations may result from nano-processed textiles in the future, thus leading to the advancement of science. This article presents the construction of sports engineering structures with high resistance to improve the quality of sports training. The mechanical properties of sports mats are improved with the help of nanotechnology. Strength, elasticity, and tear resistance are among these properties. This method enables the production of elastic, durable, and tear-resistant sports mats.

The Study for Stability of Useful Glycyrrhiza uralensis (Licorice Root) Using Nanosolve and PMMA (Nanosolve와 PMMA를 이용한 유용성감초산의 안정화에 대한 연구)

  • Ji, Hong-Geun;Kim, Ju-Duck;Kim, Jeong-Dong;Choi, Jung-Sik
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.207-210
    • /
    • 2004
  • Glycyrrhiza uralensis (licorice root) is very useful medicinal herb because of strong anti-inflammatory and anti-wrinkle effect. Therefore, it is widely used in functional cosmetics. However, it is insoluble and easily decomposed by light, heat, oxygen, etc. In this study, we first prepared NanoSolve-Licorice (30-50nm) using Glycyrrhiza uralensis and propylene glycol! hydrogenated lecithin/caprylic/capric triglyceride/glycerin/water system with microfluidizer. And then, NanoSolve-Licorice and porous PMMA are dispersed in ethanol. Finally, we could get a stabilized system with high-pressure homogenizer (1,000 Bar, 3 passes). According to HPLC measurement for glabridin content, our system is more stable compared with general liposome ones. Capsulated licorice has an enhanced anti-inflammatory effect on account of excellent skin penetration. We also evaluated our final product through image analyzer, particle size analyzer, FF-TEM and chromameter.

Tribological Behaviors on nano-structured surface of the diamond-like carbon (DLC) coated soft polymer

  • No, Geon-Ho;Mun, Myeong-Un;Ahmed, Sk.Faruque;Cha, Tae-Gon;Kim, Ho-Yeong;Lee, Gwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.356-356
    • /
    • 2010
  • Tribological behaviors of the hard film on soft substrate system were explored using the hard thin film of diamond-like carbon (DLC) coated the soft polymer of polydimethysiloxane (PDMS). A DLC film with the Young's modulus of 100 GPa was coated on PDMS substrate with Young's modulus of 10 MPa using plasma enhanced chemical vapor deposition (PECVD) technique. The deposition time was varied from 10 sec to 10 min, resulting in nanoscale roughness of wrinkle patterns with the thickness of 20 nm to 510 nm, respectively, at a bias voltage of $400\;V_b$, working pressure 10 mTorr. Nanoscale wrinkle patterns with 20-100 nm in width and 10-30 nm height were formed on DLC coating due to the residual stress in compression and difference in Young's modulus. Nanoscale roughness effect on tribological behaviors was observed by performing a tribo-experiment using the ball-on-disk type tribometer with a steel ball of 6 mm in diameter at the sliding speed of 220 rpm, normal load of 1N and 25% humidity at ambient temperature of $25^{\circ}C$. Friction force were measured with respect to thickness change of coated DLC thin film on PDMS. It was found that with increases the thickness of DLC coating on PDMS, the coefficient of friction decreased by comparison to that of the uncoated PDMS. The wear tracks before and after tribo-test were analyzed using SEM and AFM.

  • PDF

Lamellar-bio nano-hybrid; The Study for Stability of Catechin (Green Tea: EGCG) Using 3-Dimensional Liposome (라멜라-바이오 나노하이브리드: 3 Dimension-liposome을 이용한 카테킨(EGCG)에 안정화에 대한 연구)

  • Hong Geun, Ji;Jung Sik, Choi;Hee Suk, Kwon;Sung Rack, Cho;Byoung Kee, Jo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.201-205
    • /
    • 2004
  • In these several years, as many people have been attracted by the functional cosmetics, there are a lot of study to enhance the stability of active ingredients for light, heat, oxygen, etc. in the academic and industrial field. Especially, catechin is well known as strong anti-oxidant, anti-inflammatory and reducing agent for oxidative stress but it is very unstable for light, heat, oxygen. etc. In this study, the stability and skin penetration of catechin are improved by 3-dimensional method. As I-dimension, porous silica is prepared using sol-gel method, and then catechin is adsorbed in pores of silica. As 2-dimension, solid lipid nanoparticles (SLN) are obtained using non-phospholipid vesicles. Finally 3-dimension is completion through lamellar phase self-organization that combines SLN catechin with skin lipid matrix. We used laser light scattering system, cyro-SEM, chromameter, HPLC and image analyzer to analyze our 3-dimentional systems. According to chromameter date, the color stability of 3-dimensional catechin is enhanced by 5-10 times compared with general liposome systems. We also confirmed through HPLC analysis that 3-dimensional catechin is more long lasting. The effect of skin penetration and wrinkle reduction are improved, too.