Browse > Article
http://dx.doi.org/10.17702/jai.2019.20.3.110

Large Area Deposition of Biomimetic Polydopamine-Graphene Oxide Hybrids using Langmuir-Schaefer Technique  

Kim, Tae-Ho (Department of Organic Materials Engineering, Chungnam National University)
Song, Seok Hyun (Neutron Science Center, Korea Atomic Energy Research Institute)
Jo, Kyung-Il (Neutron Science Center, Korea Atomic Energy Research Institute)
Koo, Jaseung (Department of Organic Materials Engineering, Chungnam National University)
Publication Information
Journal of Adhesion and Interface / v.20, no.3, 2019 , pp. 110-115 More about this Journal
Abstract
Graphene oxide has been gathering interests as a way to exfoliate graphene. Since the oxidation group of graphene oxide can hydrogen bond with various functional groups, tremendous efforts have been actively conducted to apply various applications. However, graphene oxide alone cannot substantially possess the mechanical properties required for the practical application. Therefore, in this study, polydopamine, which is a bio-mimetic mussel protein-inspired material, was combined with graphene oxide to form a large-area composite membrane at the liquid-gas interface. In addition, the morphology of the polydopamine-graphene oxide composite thin film was also controlled to obtain a composite membrane having a nano-wrinkle structure. It can be expected to be used in the next generation seawater desalination membranes or carbon composites because it can form mechanically superior and sophisticated nanostructures.
Keywords
Langmuir-Schaefer technique; Graphene oxide; Polydopamine; Nano-wrinkle; Bio-mimetic materials;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Z. Yin, J. Zhu, Q. He, X. Cao, C. Tan, H. Chen, Q. Yan and H. Zhang, Adv. Energy Mater., 4, 1300574 (2014).   DOI
2 R. Raccichini, A. Varzi, S. Passerini and B. Scrosati, Nat. Mater., 14, 271 (2015).   DOI
3 T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B.H. Hong, J.-H. Ahn and T.-W. Lee, Nat. Photonics, 6, 105 (2012).   DOI
4 D.R. Dreyer, S. Park, C.W. Bielawski and R.S. Ruoff, Chem. Soc. Rev., 39, 228 (2010).   DOI
5 T. Lin, Y. Tang, Y. Wang, H. Bi, Z. Liu, F. Huang, X. Xie and M. Jiang, Energy Environ. Sci., 6, 1283 (2013).   DOI
6 C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, and T. Li, Science, 312, 1191 (2006).   DOI
7 Z. Jin, T.P. McNicholas, C.-J. Shih, Q.H. Wang, G.L.C. Paulus, A.J. Hilmer, S. Shimizu, and M.S. Strano, Chem. Mater., 2314, 3362 (2011).
8 L.J. Cote, F. Kim, and J. Huang, J. Am. Chem. Soc., 1313, 1043 (2009).
9 X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang and H. Dai, Nat. Nanotechnol., 3, 538 (2008).   DOI
10 Q. Zheng, W.H. Ip, X. Lin, N. Yousefi, K.K. Yeung, Z. Li, and J.-K. Kim, ACS Nano, 57, 6039 (2011).
11 J. Kim, L.J. Cote, and J. Huang, Acc. Chem. Res., 458, 1356 (2012).
12 H. Kim, Y.R. Jang, J. Yoo, Y.-S. Seo, K.-Y. Kim, J.-S. Lee, S.-D. Park, C.-J. Kim, and J. Koo, Langmuir, 308, 2170-2177 (2014).
13 H. Lee, K.-I. Choi, J.-H. Choi, J. Yoo, Y.-S. Seo, S. Satija, and J. Koo, ACS Appl. Nano Mater., 27, 4203 (2019).
14 D.‐D. Han, Y.‐L. Zhang, Y. Liu, Y.‐Q. Liu, H.‐B. Jiang, B. Han, X.‐Y. Fu, H. Ding, H.‐L. Xu, and H.‐B. Sun, Adv. Func. Mater., 25, 4548 (2015).   DOI
15 T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, S.T. Nguyen, I.A. Aksay, R.K. Prud'Homme and L.C. Brinson, Nat. Nanotechnol., 3, 327 (2008).   DOI
16 S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen and R.S. Ruoff, Nature, 442, 282 (2006).   DOI
17 M. Fang, K.G. Wang, H.B. Lu, Y.L. Yang, and S. Nutt, J. Mater. Chem., 19, 7098 (2009).   DOI
18 J.D. Mangadlao, C.M. Santos, M.J.L. Felipe, A.C.C. de Leon, D.F. Rodrigues and R.C. Advincula, Chem. Commun., 51, 2886 (2015).   DOI
19 Y. Gao, X. Chen, H. Xu, Y. Zou, R. Gu, M. Xu, A.K.-Y. Jen, and H. Chen, Carbon, 48, 4475 (2010).   DOI
20 A.L. Higginbotham, J.R. Lomeda, A.B. Morgan, and J.M. Tour. ACS Appl. Mater. Interfaces, 1, 2256 (2009).   DOI
21 D. Chen, H. Zhu, and T. Liu, ACS Appl. Mater. Interfaces, 2, 3702 (2010).   DOI
22 T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prud'Homme and L. C. Brinson, Nat. Nanotechnol., 3, 327 (2008).   DOI
23 H. Bai, C. Li, X. Wang and G. Shi, Chem. Commun., 46, 2376 (2010).   DOI
24 S. Park, D. A. Dikin, S. T. Nguyen and R. S. Ruoff, J. Phys. Chem. C, 113, 15801 (2009).   DOI
25 Y. Liu, K. Ai, and L. Lu, Chem. Rev., 114, 5057 (2014).   DOI
26 J. H. Ryu, P. B. Messersmith, and H. Lee, ACS Appl. Mater. Interfaces, 109, 7523 (2018)
27 H. Lee, S. M. Dellatore, W. M. Miller, P. B. Messersmith, Science, 318, 426 (2007).   DOI
28 L. J. Cote, F. Kim, J. Huang, J. Am. Chem. Soc., 131, 1043–1049 (2009).   DOI
29 J. S. Park, S. M. Cho, W.-J. Kim, J. Park, P. J. Yoo, ACS Appl. Mater. Interfaces, 3, 360 (2011).   DOI
30 H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, Y. Chen, ACS Nano, 2, 463 (2008).   DOI
31 J. Azevedo, C. C. Coquelard, P. Jegou, T. Yu, J.-J. Benattar, J. Phys. Chem. C, 115, 14678 (2011).   DOI