Browse > Article
http://dx.doi.org/10.7473/EC.2012.47.4.272

Preparation and Property of Flexible/Stretchable Electrodes  

Lee, Gi-Bbeum (Department of Polymer-Nano Science and Technology, Chonbuk National University)
Nah, Changwoon (Department of Polymer-Nano Science and Technology, Chonbuk National University)
Publication Information
Elastomers and Composites / v.47, no.4, 2012 , pp. 272-281 More about this Journal
Abstract
Flexible/stretchable electronics have recently focused, since their applications extend to emerging flexible displays, sensors, dielectric elastomer actuator and generators, and smart surgical tools. Flexible/stretchable electrodes should be synchronized with employing mechanical deformations of either flexing or stretching modes. Thus, the research area is one of the tough subjects, since the electrodes should keep their basic functions of electrodes under various mode of mechanical deformations. In this review, we discuss the recent development in the preparation and properties of such flexible/stretchable electrodes.
Keywords
flexible; stretchable; electrode; vapor deposition; polymer composites; wrinkle structure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. H. Reuss, B. R. Chalamala, A. Moussessian, M. G. Kane, A. Kumar, D. C. Zhang, J. A. Rogers, M. Hatalis, D. Temple, G. Moddel, B. J. Eliasson, M. J. Estes, J. Kunz, E. Handy, E. S. Harmon, D. B. Salzman, J. M. Woodall, M. A. Alam, J. Murthi, S. C. Jacobson, M. Olivier, D. Markus, P. M. Cambell, and E. Snow, "Macroelectronics: Perspectives on Technology and Applications", Proc. IEEE, 93, 1239 (2005).   DOI   ScienceOn
2 T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, "A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications", Proc. Natl. Acad. Sci. U.S.A, 101, 9966 (2004).   DOI   ScienceOn
3 X. Lu, Y. Xia, "Electronic materials: Buckling down for flexible electronics", Nat. Nanotechnol, 1, 163 (2006).   DOI   ScienceOn
4 D. -H. Kim, J. -H. Ahn, W. M. Choi, H. -S. Kim, T. -H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, and J. A. Rogers, "Stretchable and Foldable Silicon Integrated Circuits", Science, 320, 507 (2008).   DOI   ScienceOn
5 M. B. Schubert and J. H. Werner, "Flexible Solar Cells for Clothing", Mater. Today, 9, 42 (2006).
6 G. Corbelli, C. Ghisleri, M. Marelli, P. Milani, and L. Ravagnan, "Highly Deformable Nanostructured Elastomeric Electrodes With Improving Conductivity Upon Cyclical Stretching", Adv. Mater., 23, 4504 (2011).   DOI   ScienceOn
7 D. C. Hyun, M. Park, C. Park, Bongsoo Kim, Younan Xia, Jae Hyun Hur, Jong Min Kim, Jong Jin Park, and Unyong Jeong, "Ordered Zigzag Stripes of Polymer Gel/Metal Nanoparticle Composites for Highly Stretchable Conductive Electrodes", Adv. Mater., 23, 2946 (2011).   DOI   ScienceOn
8 I. M. Graz, D. P. J. Cotton, and S. P. Lacour, "Extended cyclic uniaxial loading of stretchable gold thin-films on elastomeric substrates", Appl. Phys. Lett., 94, 071902 (2009).   DOI   ScienceOn
9 S. Rosset, M. Niklaus, P. Dubois, and H. R. Shea, "Metal Ion Implantation for the Fabrication of Stretchable Electrodes on Elastomers", Adv. Funct. Mater., 19, 470 (2009).   DOI   ScienceOn
10 G. Maggioni, A. Vomiero, S. Carturan, C. Scian, G. Mattei, M. Bazzan, C. d. J. Fernández, P. Mazzoldi, A. Quaranta, and G. D. Mea, "Structure and optical properties of Au-polyimide nanocomposite films prepared by ion implantation", Appl. Phys. Lett., 85, 5712 (2004).   DOI   ScienceOn
11 G. -K. Lau, S. Chun-Kiat Goh, and Li-Lynn Shiau, "Dielectric elastomer unimorph using flexible electrodes of electrolessly deposited (ELD) silver", Sensor. Actuat. A-Phys., 169, 234 (2011).   DOI   ScienceOn
12 S. P. Lacour, J. Jones, S. Wagner, T. Li, and Z. Suo, "Stretchable interconnects for elastic electronic surfaces", Proc. IEEE, 93, 1459 (2005).   DOI   ScienceOn
13 M. Kujawski, J. D. Pearse, and E. Smela, "Elastomers filled with exfoliated graphite as compliant electrodes", Carbon, 48, 2409 (2010).   DOI   ScienceOn
14 T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, and T. Someya, "A rubberlike stretchable active matrix using elastic conductors", Science, 321, 1468 (2008).   DOI   ScienceOn
15 Y. Li and H. Shimizu, "Toward a Stretchable, Elastic, and Electrically Conductive Nanocomposite: Morphology and Properties of Poly[styrene-b-(ethylene-co-butylene)-b-styrene]/ Multiwalled Carbon Nanotube Composites Fabricated by High-Shear Processing", Macromolecules, 42, 2587 (2009).   DOI   ScienceOn
16 K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, "Large-scale pattern growth of graphene films for stretchable transparent electrodes", Nature, 457, 706 (2009).   DOI   ScienceOn
17 T. S. Hansen, K. West, O. Hassager, and N. B. Larsen, "Highly Stretchable and Conductive Polymer Material Made from Poly(3,4-ethylenedioxythiophene) and Polyurethane Elastomers", Adv. Funct. Mater., 17, 3069 (2007).   DOI   ScienceOn
18 T. A. Kim, H. S. Kim, S. S. Lee, and M. Park, "Single-walled carbon nanotube/silicone rubber composites for compliant electrodes", Carbon, 50, 444 (2012).   DOI   ScienceOn
19 D. S. Gray, J. Tien, and C. S. Chen, "High conductivity elastomeric electronics", Adv. Mater., 16, 393 (2004).   DOI   ScienceOn
20 S. Befahy, S. Yunus, T. Pardoen, P. Bertrand, and M. Troosters, "Stretchable helical gold conductor on silicone rubber microwire", Appl. Phys. Lett., 91, 141911 (2007).   DOI   ScienceOn
21 T. Li, Z. Huang, Z. Suo, S. P. Lacour, and S. Wagner, "Stretchability of thin metal films on elastomer substrates", Appl. Phys. Lett., 85, 3435 (2004).   DOI   ScienceOn
22 C. Yu and H. Jiang, "Forming wrinkled stiff films on polymeric substrates at room temperature for stretchable interconnects applications", Thin Solid Films, 519, 818 (2010).   DOI   ScienceOn
23 S. P. Lacour, S. Wagner, Z. Huang, and Z. Suo, "Stretchable gold conductors on elastomeric substrates", Appl. Phys. Lett., 82, 2404 (2003).   DOI   ScienceOn
24 S. P. Lacour, J. Jones, S. Wagner, T. Li, and Z. Suo, "Stretchable Interconnects for Elastic Electronic Surfaces", Proc. IEEE, 93, 1459 (2005).   DOI   ScienceOn
25 D. Y. Khang, H. Jiang, Y. Huang, and J. A. Rogers, "A Stretchable Form of Single-Crystal Silicon for High-Performance Electronics on Rubber Substrates", Science, 311, 208 (2006).   DOI   ScienceOn
26 X. Wang, H. Hu, Y. Shen, X. Zhou, and Z. Zheng, "Stretchable Conductors with Ultrahigh Tensile Strain and Stable Metallic Conductance Enabled by Prestrained Polyelectrolyte Nanoplatforms", Adv. Mater., 23, 3090 (2011).   DOI   ScienceOn
27 C. Yu, C. Masarapu, J. Rong, B. Wei, and H. Jiang, "Stretchable Supercapacitors Based on Buckled Single-Walled Carbon Nanotube Macrofilms", Adv. Mater., 21, 4793 (2009).   DOI   ScienceOn
28 M. Gonzalez, F. Axisa, M. V. Bulcke, D. Brosteaux, B. Vandevelde, and J. Vanfleteren, "Design of metal interconnects for stretchable electronic circuits", Microelectron. Reliab., 48, 825 (2008).   DOI   ScienceOn
29 R. Pelrine, R. Kornbluh, J. Joseph, R. Heydt, Q. Pei, and S. Chiba, Mater. Sci. Eng. C, 11, 89 (2000).   DOI   ScienceOn
30 M. K. Shin, J. Oh, M. Lima, M. E. Kozlov, S. J. Kim, and R. H. Baughman, "Elastomeric Conductive Composites Based on Carbon Nanotube Forests", Adv. Mater., 22, 2663 (2010).   DOI   ScienceOn
31 L. Ravagnan, G. Divitini, S. Rebasti, M. Marelli, P. Piseri, and P. Milani, "Poly(methyl methacrylate)-palladium clusters nanocomposite formation by supersonic cluster beam deposition: a method for microstructured metallization of polymer surfaces", J. Phys. D: Appl. Phys., 42, 082002 (2009).   DOI   ScienceOn
32 A. Kozinda, Y. Jiang, and L. Lin, "Flexible Energy Storage Devices Based on Lift-Off of CNT Films", Proceedings of 25th IEEE Micro Electro Mechanical Systems Conference, pp. 1233-1236, Paris, France, Jan. 2012
33 L. Hu, M. Pasta, F. L. Mantia, L. Cui S. Jeong, H. D. Deshazer, J. W. Choi, S. M. Han, and Y. Cui, "Stretchable, Porous, and Conductive Energy Textiles", Nano Lett., 10, 708 (2010).   DOI   ScienceOn
34 D. -W. Wang, F. Li, J. Zhao, W. Ren, Z. -G. Chen, J. Tan, Z. -S. Wu, I. Gentle, G. Q. Lu, and H. -M. Cheng, "Fabrication of Graphene/Polyaniline Composite Paper via In Situ Anodic Electropolymerization for High-Performance Flexible Electrode", ACS Nano, 3, 1745 (2009).   DOI   ScienceOn
35 H. Wu, L. Hu, M. W. Rowell, D. Kong, J. J. Cha, J. R. McDonough, J. Zhu, Y. Yang, M. D. McGehee, and Y. Cui, "Electrospun Metal Nanofiber Webs as High-Performance Transparent Electrode", Nano Lett., 10, 4242 (2010).   DOI   ScienceOn
36 D. Li and Y. Xia, "Electrospinning of nanofibers: reinventing the wheel?", Adv. Mater., 16, 1151 (2004).   DOI   ScienceOn
37 A. Greiner and J. H. Wendorff, "Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers", Angew. Chem. Int. Ed., 46, 5670 (2007).   DOI   ScienceOn
38 M. Bognitzki, M. Becker, M. Graeser, W. Massa, J. H. Wendorff, A. Schaper, D. Weber, A. Beyer, A. Golzhauser, and A. Greiner, "Preparation of Sub-micrometer Copper Fibers via Electrospinning", Adv. Mater., 18, 2384. (2006).   DOI   ScienceOn
39 D. Li and Y. N. Xia, "Fabrication of Titania Nanofibers by Electrospinning", Nano Lett., 3, 555 (2003).   DOI   ScienceOn
40 H. Wu, R. Zhang, X. Liu, D. Lin, and W. Pan, "Electrospinning of Fe, Co, and Ni Nanofibers: Synthesis, Assembly, and Magnetic Properties", Chem. Mater., 19, 3506 (2007).   DOI   ScienceOn
41 B. Kim, J. Lee, and I. Yu, "Electrical properties of singlewall carbon nanotube and epoxy composites", J. Appl. Phys., 94, 6724 (2003).   DOI   ScienceOn
42 M. A. Valente, L. C. Costa, S. K. Mendiratta, F. Henry, and L. Ramanitra, "Structural and electrical properties of polystyrene- carbon composites", Solid. State. Commun., 112, 67 (1999).   DOI   ScienceOn
43 L. Flandin, A. Chang, S. Nazarenko, A. Hiltner and E. Baer, "Effect of strain on the properties of an ethylene-octene elastomer with conductive carbon fillers", J. Appl. Polym. Sci., 76, 894 (2000).   DOI   ScienceOn
44 S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, "Graphene-based composite materials", Nature, 442, 282 (2006).   DOI   ScienceOn
45 J. Yang, M. Tian, Q. -X. Jia, J. -H. Shi, L. -Q. Zhang, S. -H. Lim, Z. -Z Yu, and Y. -W. Mai, "Improved mechanical and functional properties of elastomer/graphite nanocomposites prepared by latex compounding", Acta. Mater., 55, 6372 (2007).   DOI   ScienceOn
46 C. -X, Liu and J. -W Choi, "Patterning conductive PDMS nanocomposite in an elastomer using microcontact printing", J. Micromech. Microeng., 8, 085019 (2009)..
47 R. hang, M. Baxendale, and T. Peijs. Universal resistivitystrain dependence of carbon nanotube/polymer composites", Phys. Rev. B, 76, 195433 (2007).   DOI   ScienceOn
48 L. Ji, M. Stevens, Y. Zhu, Q. Gong, J. Wu, and J. Liang, "Preparation and properties of multi-walled carbon nanotube/ carbon/polystyrene composites", Carbon, 47, 2733 (2009).   DOI   ScienceOn
49 S. Stankovich, R. Piner, X. Chen, N. Wu, S. Nguyen, and R. Ruoff, "Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate)", J. Mater. Chem., 16, 155 (2005).
50 G. Wang, X. Tao, and R. Wang, "Flexible organic light-emitting diodes with a polymeric nanocomposite anode", Nanotechnology, 14, 145201 (2008)..
51 N. Srivastava and R. Mehra, "Study of structural, electrical, and dielectric properties of polystyrene/foliated graphite nanocomposite developed via in situ polymerization", J. Appl. Polym. Sci., 109, 3991 (2008).   DOI   ScienceOn
52 G. Chen, W. Weng, D. Wu, and C. Wu, "PMMA/graphite nanosheets composite and its conducting properties", Eur. Polym. J., 39, 2329 (2003).   DOI   ScienceOn
53 A. Celzard, E. McRae, J. F. Mareche, G. Furdin, M. Dufort, and C. Deleuze, "Composites based on micron-sized exfoliated graphite particles: electrical conduction, critical exponents and anisotropy", J. Phys. Chem. Solids, 57, 715 (1996).   DOI   ScienceOn
54 S. C. Cowin, "Tissue growth and remodeling", Annu. Rev. Biomed. Eng., 6, 77 (2004).   DOI   ScienceOn
55 J. Kopecek, "Hydrogel biomaterials: A smart future?", Biomaterials, 28, 5185 (2007).   DOI   ScienceOn
56 J. Genzer and J. Groenewold, "Soft matter with hard skin: From skin wrinkles to templating and material characterization", Soft Matter, 2, 310 (2006).   DOI   ScienceOn
57 L. He and L. Qiao, "Pre-tension regulates buckling patterns of soft films with interactions", Europhys. Lett., 80, 14003 (2007).   DOI   ScienceOn
58 W. Monch and S. Herminghaus, "Elastic instability of rubber films between solid bodies", Europhys. Lett., 53, 525 (2001).   DOI   ScienceOn
59 S. Q. Huang, Q. Y. Li, X. Q. Feng, and S. W. Yu, "Pattern instability of a soft elastic thin film under van der Waals forces", Mech. Mater., 38, 88 (2006).   DOI   ScienceOn
60 K. Li and L. He, "Deformation and buckling of a pre-stretched soft elastic film induced by spatially modulated electric fields", Int. J. Solids. Struct., 47, 2784 (2010).   DOI   ScienceOn
61 V. Shenoy and A. Sharma, "Pattern Formation in a Thin Solid Film with Interactions", Phys. Rev. Lett., 86, 119 (2001).   DOI   ScienceOn
62 W. Hong, X. Zhao, J. Zhou, and Z. Suo, "A theory of coupled diffusion and large deformation in polymeric gels", J. Mech. Phys. Solids, 56, 1779 (2008).   DOI   ScienceOn
63 I. Tokarev and S. Minko, "Stimuli-responsive hydrogel thin films" Soft Matter, 5, 511 (2009).   DOI   ScienceOn
64 B. Li, Y. -P. Cao, X. -Q. Feng, and H. Gao, "Mechanics of morphological instabilities and surface wrinkling in soft materials: a review", Soft Matter, 8, 5728 (2012).   DOI   ScienceOn
65 M. Guvendiren, S. Yang, and J. A. Burdick, "Hydrogel Patterning: (Swelling-Induced Surface Patterns in Hydrogels with Gradient Crosslinking Density)", Adv. Funct. Mater., 19, 3038 (2009).   DOI   ScienceOn
66 S. Singamaneni, M. E. McConney, and V. V. Tsukruk, "Spontaneous Self Folding in Confined Ultrathin Polymer Gel", Adv. Mater., 22, 1263 (2010).   DOI   ScienceOn
67 P. J. Yoo, K. Y. Suh, S. Y. Park, and H. H. Lee, "Physical Self-Assembly of Microstructures by Anisotropic Buckling", Adv. Mater., 14, 1383 (2002).   DOI
68 E. P. Chan and A. J. Crosby, "Fabricating Microlens Arrays by Surface Wrinkling", Adv. Mater., 18, 3238 (2006).   DOI   ScienceOn
69 H. Mei, R. Huang, J. Y. Chung, C. M. Stafford, and H. -H. Yu, "Buckling modes of elastic thin films on elastic substrates", Appl Phys. Lett., 90, 151902 (2007).   DOI   ScienceOn
70 D. Chandra, S. Yang, and P. C. Lin, "Strain responsive concave and convex microlens arrays", Appl. Phys. Lett., 91, 251912 (2007).   DOI   ScienceOn
71 D. H. Kim and J. A. Rogers, "Stretchable Electronics: Materials Strategies and Devices", Adv. Mater., 20, 4887 (2008).   DOI   ScienceOn
72 A. J. Baca, J. H. Ahn, Y. Sun, M. A. Meitl, E. Menard, H. S. Kim, W. M. Choi, D. H. Kim, Y. Huang, and J. A. Rogers, "Semiconductor Wires and Ribbons for High-Performance Flexible Electronics", Angew. Chem. Int. Ed., 47, 5524 (2008).   DOI   ScienceOn
73 W. M. Choi, J. Song, D. Y. Khang, H. Jiang, Y. Y. Huang, and J. A. Rogers, "Biaxially Stretchable "Wavy" Silicon Nanomembranes", Nano Lett., 7, 1655 (2007).   DOI   ScienceOn
74 N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, "Spontaneous formation of ordered structures in thin filmsofmetals supported on an elastomeric polymer", Nature, 393, 146 (1998).   DOI   ScienceOn
75 Y. Sun, W. M. Choi, H. Jiang, Y. Y. Huang, and J. A. Rogers, "Controlled buckling of semiconductor nanoribbons for stretchable electronics", Nature Nanotechnol., 1, 201 (2006).   DOI   ScienceOn
76 D. -H. Kim, J. -H. Ahn, W. M. Choi, H. Kim, T. -H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, and J. A. Rogers, "Stretchable and Foldable Silicon Integrated Circuits", Science, 320, 507 (2008).   DOI   ScienceOn