• Title/Summary/Keyword: Nano-scale

Search Result 1,058, Processing Time 0.032 seconds

Application of Graphene Platelets on Electronic Controlled Thermostat of TGDI Engine for Improving Thermal Sensitivity (TGDI엔진용 전자식 수온조절기의 감온성능 향상을 위한 그래핀 소재의 적용)

  • Kim, SeoKyu;Kim, YongJeong;Joung, Heehwa;Jeon, Wonil;Jeong, Jinwoo;Jeong, SooJin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.1
    • /
    • pp.66-73
    • /
    • 2017
  • In this work, graphene platelets were introduced into wax in an automotive electronic controlled thermostat for the purpose of enhancing its thermal-conductive property and improving response performance. Graphene content ranging from 10 % to 20% was added into and mixed with the wax to investigate the effect of graphene amounts on the performance of an automotive electronic controlled thermostat in terms of response time, hysteresis and melting temperature. The experimental results revealed that graphene in wax contributed to a reduction in the response time and hysteresis of an automotive electronic controlled thermostat. As a consequence, important improvement in thermal sensitivity, full lift, melting temperature and hysteresis were obtained. The thermal response of wax with graphene content of 20 % was improved by 25 %, as compared to that of wax with Cu content of 20 %. Hysteresis of wax with graphene was reduced by $0.6^{\circ}C$ as compared to that of wax with Cu content. The melting temperature of wax is lowered and hysteresis is also improved with increased graphene content of wax in an electronic controlled thermostat. We hope that this study can help further the transition of nano-fluid technology from small-scale research laboratories to industrial application in the automotive sector.

The Effects of CF4 Partial Pressure on the Hydrophobic Thin Film Formation on Carbon Steel by Surface Treatment and Coating Method with Linear Microwave Ar/CH4/CF4 Plasma

  • Han, Moon-Ki;Cha, Ju-Hong;Lee, Ho-Jun;Chang, Cheol Jong;Jeon, Chang Yeop
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.2007-2013
    • /
    • 2017
  • In order to give hydrophobic surface properties on carbon steel, the fluorinated amorphous carbon films were prepared by using linear 2.45GHz microwave PECVD device. Two different process approaches have been tested. One is direct deposition of a-C:H:F films using admixture of $Ar/CH_4/CF_4$ working gases and the other is surface treatment using $CF_4$ plasma after deposition of a-C:H film with $Ar/CH_4$ binary gas system. $Ar/CF_4$ plasma treated surface with high $CF_4$ gas ratio shows best hydrophobicity and durability of hydrophobicity. Nanometer scale surface roughness seems one of the most important factors for hydrophobicity within our experimental conditions. The properties of a-C:H:F films and $CF_4$ plasma treated a-C:H films were investigated in terms of surface roughness, hardness, microstructure, chemical bonding, atomic bonding structure between carbon and fluorine, adhesion and water contact angle by using atomic force microscopy (AFM), nano-indentation, Raman analysis and X-ray photoelectron spectroscopy (XPS).

Construction of Nano-meter Scale Linear Translation System (직선 이동용 나노 미세 이동장치의 제작)

  • Jung, Goo-Eun;Kahng, Se-Jong
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.5
    • /
    • pp.512-517
    • /
    • 2006
  • A reliable linear translation system was constructed. The system has six piezo legs, attached to a main body, holding a hexagonal sapphire rod. The sapphire rod moves either forward or backward with the sequential motion of the piezo legs, driven by characteristic electric voltage waves. The translational system was tested in vertical direction. The speed of the sapphire rod was turned out to be constant during several mm travel. The slowest upward speed was measured to be ${\sim}1.7{\times}10^{-6}m/s$, yielding ${\sim}28.3nm/step$, while the slowest upward speed was ${\sim}3.7{\times}10^{-6}m/s$, with ${\sim}61.7nm/step$, due to gravitational force. The velocity increases linearly, as the amplitude of the voltage waves increases. The linear translation system will be used as a coarse approach part for a scanning tunneling microscope.

Detection of Resonance Frequency of Micro Mechanical Devices Using Optical Method and Their Application for Mass Detection (광학적 방법을 통한 마이크로 역학 소자의 공진주파수 측정법과 이를 이용한 마이크로 캔티레버 공진기의 질량 변화 연구)

  • Kim, Hak-Seong;Lee, Sang-Wook
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.1
    • /
    • pp.36-40
    • /
    • 2012
  • We have developed the detection method of the resonance frequency of micro/nano mechanical resonator using optical method. The optical interferometery method enabled us to detect the displacement change of resonators within several nm scale. The micro mechanical resonator was produced by attaching a micro mechanical cantilever to a piezo ceramic. The mass of cantilever was increased by evaporating Au using electron beam evaporator and the mass variation was estimated by detecting the resonance frequency changes.

Hysteresis Compensating of PZT Actuator in Micro Tensile Tester Using Inverse Compensation Method

  • Lee, Hye-Jin;Kim, Seung-Soo;Lee, Nak-Kyu;Lee, Hyoung-Wook;Hwang, Jai-Hyuk;Han, Chang-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.502-505
    • /
    • 2005
  • Researches about micro technology travel lively in these days. Such many researches are concentrated in the field of materials and a process field. But properties of micro materials should be known to give results of research developed into still more. In these various material properties, mechanical property such as tensile strength, elastic modulus, etc is the basic property. To measure mechanical properties in micro or nano scale, actuating must be very precise. PZT is a famous actuator which becomes a lot of use to measure very precise mechanical properties in micro research field. But PZT has a nonlinearity which is called as hysteresis. Not precision result is caused because of this hysteresis property in PZT actuator. Therefore feedback control method is used in many researches to prevent this hysteresis of PZT actuator. Feedback control method produce a good result in processing view, but cause a loss in a resolution view. In this paper, hysteresis is compensated by open loop control method. Hysteresis property is modeled in Mathematical function and compensated control input is constructed using inverse function of original data. Reliability of this control method can be confirmed by testing nickel thin film that is used in MEMS material broadly.

  • PDF

Quantum-Mechanical Modeling and Simulation of Center-Channel Double-Gate MOSFET (중앙-채널 이중게이트 MOSFET의 양자역학적 모델링 및 시뮬레이션 연구)

  • Kim, Ki-Dong;Won, Tae-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.7 s.337
    • /
    • pp.5-12
    • /
    • 2005
  • The device performance of nano-scale center-channel (CC) double-gate (DG) MOSFET structure was investigated by numerically solving coupled Schr$\"{o}$dinger-Poisson and current continuity equations in a self-consistent manner. The CC operation and corresponding enhancement of current drive and transconductance of CC-NMOS are confirmed by comparing with the results of DG-NMOS which are performed under the condition of 10-80 nm gate length. Device optimization was theoretically performed in order to minimize the short-channel effects in terms of subthreshold swing, threshold voltage roll-off, and drain-induced barrier lowering. The simulation results indicate that DG-MOSFET structure including CC-NMOS is a promising candidates and quantum-mechanical modeling and simulation calculating the coupled Schr$\"{o}$dinger-Poisson and current continuity equations self-consistently are necessary for the application to sub-40 nm MOSFET technology.

Fabrication of Thin Solid Oxide Film Fuel Cells

  • Jee, Young-Seok;Chang, Ik-Whang;Son, Ji-Won;Lee, Jong-Ho;Kang, Sang-Kyun;Cha, Suk-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.1
    • /
    • pp.82-85
    • /
    • 2010
  • Recently, thin film processes for oxides and metal deposition, such as physical vapor deposition (PVD) and chemical vapor deposition (CVD), have been widely adapted to fabricate solid oxide fuel cells (SOFCs). In this paper, we presented two research area of the use of such techniques. Gadolinium doped ceria (GDC) showed high ionic conductivity and could guarantee operation at low temperature. But the electron conductivity at low oxygen partial pressure and the weak mechanical property have been significant problems. To solve these issues, we coated GDC electrolyte with a nano scale yittria-doped stabilized zirconium (YSZ) layer via atomic layer deposition (ALD). We expected that the thin YSZ layer could have functions of electron blocking and preventing ceria from the reduction atmosphere. Yittria-doped barium zirconium (BYZ) has several orders higher proton conductivity than oxide ion conductor as YSZ and also has relatively high chemical stability. The fabrication processes of BYZ is very sophisticated, especially the synthesis of thin-film BYZ. We discussed the detailed fabrication processes of BYZ as well as the deposition of electrode. This paper discusses possible cell structure and process flow to accommodate such films.

Reduction of Barrier Height between Ni-silicide and p+ source/drain for High Performance PMOSFET (고성능 PMOSFET을 위한 Ni-silicide와 p+ source/drain 사이의 barrier height 감소)

  • Kong, Sun-Kyu;Zhang, Ying-Ying;Park, Kee-Young;Li, Shi-Guang;Zhong, Zhun;Jung, Soon-Yen;Yim, Kyoung-Yean;Lee, Ga-Won;Wang, Jin-Suk;Lee, Hi-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.157-157
    • /
    • 2008
  • As the minimum feature size of semiconductor devices scales down to nano-scale regime, ultra shallow junction is highly necessary to suppress short channel effect. At the same time, Ni-silicide has attracted a lot of attention because silicide can improve device performance by reducing the parasitic resistance of source/drain region. Recently, further improvement of device performance by reducing silicide to source/drain region or tuning the work function of silicide closer to the band edge has been studied extensively. Rare earth elements, such as Er and Yb, and Pd or Pt elements are interesting for n-type and p-type devices, respectively, because work function of those materials is closer to the conduction and valance band, respectively. In this paper, we increased the work function between Ni-silicide and source/drain by using Pd stacked structure (Pd/Ni/TiN) for high performance PMOSFET. We demonstrated that it is possible to control the barrier height of Ni-silicide by adjusting the thickness of Pd layer. Therefore, the Ni-silicide using the Pd stacked structure could be applied for high performance PMOSFET.

  • PDF

Anodizing of pure Al foil for AAO as a Nanowire Template (Al 양극산화에 의한 나노선재용 AAO template제조)

  • Lee Kwan Hyi;Lee Hwa Young;Jeung Won Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.2
    • /
    • pp.47-52
    • /
    • 2001
  • AAO template having nano scale pores of high aspect ratio has been prepared through anodizing of aluminum foil in sulfuric acid electrolyte. The effect of anodizing parameters on the pore size and distribution was also examined to obtain the proper AAO as a template material of nanowire. The surface of AAO template prepared was observed by SEM to examine the mean size and distribution of pores generated by the anodizing and Fe nanowires obtained by AC electroforming using AAO template were also observed with TEM to determine the length and shape of them. From the results of work, it was found that the mean size or distribution of pores was influenced significantly by the anodizing parameters such as voltage and temperature of electrolyte. Mean length and aspect ratio of Fe nanowires prepared in the work were found to be $10{\mu}m\;and\;300\;to\;1,000$, respectively.

Influence of Cooling Rate and Alloy Composition on The Microstructural Evolution of Al-Ag Eutectic System ($Al-Ag_2Al$ 공정계 합금의 조성 및 냉각 속도에 따른 미세조직 고찰)

  • Sohn, Sung-Woo;Park, Jin-Man;Kim, Tae-Eung;Lim, Ka-Ram;Kim, Won-Tae;Kim, Do-Hyang
    • Journal of Korea Foundry Society
    • /
    • v.29 no.2
    • /
    • pp.64-69
    • /
    • 2009
  • In the present study the effect of cooling rate during solidification on the microstructural characteristics of Al-xAg (x = 31, 33, 35 at.%) in-situ binary eutectic composites has been investigated. To provide a wide range of cooling rate three different casting techniques, i.e. conventional casting, injection casting, and melt spinning have been used. The observed microstructure is very much dependent on the cooling rate. The fcc ${\alpha}$-Al and hcp $Ag_2Al$ phases exhibits an orientation of (111)Al//(0001)$Ag_2Al$, [1-10]Al//[11- 20]$Ag_2Al$. The microstructure of the melt-spun samples contains Widmanstatten structure resulting from solid-state transformation and nano scale two-phase structure resulting from solid-state phase separation. The microstructure of injection-cast samples contains eutectic structure and solid state phase-separated structure. On the other hand, conventional-cast samples exhibit a microstructure consisted of plate-type eutectic structure.