Influence of Cooling Rate and Alloy Composition on The Microstructural Evolution of Al-Ag Eutectic System

$Al-Ag_2Al$ 공정계 합금의 조성 및 냉각 속도에 따른 미세조직 고찰

  • Sohn, Sung-Woo (Center for Noncrystalline Materials, Department of Metallurgical Engineering, Yonsei University) ;
  • Park, Jin-Man (Center for Noncrystalline Materials, Department of Metallurgical Engineering, Yonsei University, Institute for Complex Materials, IFW-Dresden, Institute for Complex Materials) ;
  • Kim, Tae-Eung (Center for Noncrystalline Materials, Department of Metallurgical Engineering, Yonsei University) ;
  • Lim, Ka-Ram (Center for Noncrystalline Materials, Department of Metallurgical Engineering, Yonsei University) ;
  • Kim, Won-Tae (Division of Applied Science, Cheongju University) ;
  • Kim, Do-Hyang (Center for Noncrystalline Materials, Department of Metallurgical Engineering, Yonsei University)
  • 손성우 (준결정재료 연구단 / 연세대학교 금속시스템공학과) ;
  • 박진만 (준결정재료 연구단 / 연세대학교 금속시스템공학과) ;
  • 김태응 (준결정재료 연구단 / 연세대학교 금속시스템공학과) ;
  • 임가람 (준결정재료 연구단 / 연세대학교 금속시스템공학과) ;
  • 김원태 (청주대학교 응용과학부) ;
  • 김도향 (준결정재료 연구단 / 연세대학교 금속시스템공학과)
  • Published : 2009.06.30

Abstract

In the present study the effect of cooling rate during solidification on the microstructural characteristics of Al-xAg (x = 31, 33, 35 at.%) in-situ binary eutectic composites has been investigated. To provide a wide range of cooling rate three different casting techniques, i.e. conventional casting, injection casting, and melt spinning have been used. The observed microstructure is very much dependent on the cooling rate. The fcc ${\alpha}$-Al and hcp $Ag_2Al$ phases exhibits an orientation of (111)Al//(0001)$Ag_2Al$, [1-10]Al//[11- 20]$Ag_2Al$. The microstructure of the melt-spun samples contains Widmanstatten structure resulting from solid-state transformation and nano scale two-phase structure resulting from solid-state phase separation. The microstructure of injection-cast samples contains eutectic structure and solid state phase-separated structure. On the other hand, conventional-cast samples exhibit a microstructure consisted of plate-type eutectic structure.

Keywords

References

  1. B.B. Sun, M.L. Sui, Y.M. Wang, G. He, J. Eckert and E. Ma : Acta Mater., "Ultrafine composite microstructure in a bulk Ti alloy for high strength, strain hardening and tensile ductility", 54 (2006) 1349-1357 https://doi.org/10.1016/j.actamat.2005.11.011
  2. L. He and E. Ma : Nanostructured Mater., "Processing and microhardness of bulk Cu-Fe nanocomposites", 7 (1996) 327-339 https://doi.org/10.1016/0965-9773(96)00003-7
  3. C.C. Koch : Scr. Mater., "Optimization of strength and ductility in nanocrystalline and ultrafine grained metals", 49 (2003) 657-662 https://doi.org/10.1016/S1359-6462(03)00394-4
  4. D.V. Louzguine, L.V. Louzguina, H. Kato, and A. Inoue : Acta Mater., "Investigation of Ti–Fe–Co bulk alloys with high strength and enhanced ductility", 53 (2005) 2009-2017 https://doi.org/10.1016/j.actamat.2005.01.012
  5. L. Shi, H. Ma, T. Liu, J. Xu, and E. Ma : J. Mater. Res., 'Microstructure and compressive properties of chill-cast Mg-Al-Ca alloys", 21 (2006) 613-622 https://doi.org/10.1557/jmr.2006.0074
  6. J.M. Park, S.W. Sohn, T.E. Kim, K.B. Kim, W.T. Kim, and D.H. Kim : Scr. Mater., "Nanostructure–dendrite composites in the Fe–Zr binary alloy system exhibiting high strength and plasticity", 57 (2007) 1153-1156 https://doi.org/10.1016/j.scriptamat.2007.08.004
  7. S. Scudino, J. Das, M. Stoica, K. B. Kim, M. Kusy, and J. Eckert : Appl. Phys. Lett., "High strength hexagonal structured dendritic phase reinforced Zr–Ti–Ni bulk alloy with enhanced ductility", 88 (2006) 201920 https://doi.org/10.1063/1.2206695
  8. H. Baker, editor : ASM International, "ASM handbook of alloy phase diagrams", (1992)
  9. G. R. Armstrong and A. Hellawell : Acta Metal. "Composition and volume fraction changes in Ag-Al eutectic alloys", 22 (1974) 1383-1389 https://doi.org/10.1016/0001-6160(74)90038-8
  10. R.O. Williams, D.S. Easron : Scr. Metal., "The solubility of silver in aluminum", 8 (1974) 27-33 https://doi.org/10.1016/0036-9748(74)90433-5
  11. V. T. Witusiewicz, U. Hecht, S. G. Fries and S. Rex : J. Alloys Compd., "The Ag-Al-Cu system Part I: Reassessment of the constituent binaries on the basis of new experimental data", 385 (2004) 133-143
  12. B. Cantor and G.A. Chadwick : J. Crst. Growth, "Crystallography of Al-Al3Ni, Al-Al2Cu and Al-$\zeta$(AlAg) eutectics during nucleation and the early stages of growth", 30 (1975) 101-108 https://doi.org/10.1016/0022-0248(75)90207-9
  13. B. Cantor and G.A. Chadwick : J. Crst. Growth, "Thermal stability of eutectic and off-eutectic Ag-Cu, Cd-Zn and Al- -$\zeta$(AlAg) alloys', 36 (1976) 232-238 https://doi.org/10.1016/0022-0248(76)90282-7
  14. J.M. Howe, H.I. Aaronson and R. Gronsky : Acta metall., "ATOMIC MECHANISMS OF PRECIPITATE PLATE GROWTH IN THE Al-Ag SYSTEM-I. CONVENTIONAL TRANSMISSION ELECTRON MICROSCOPY", 33 (1985) 639-648 https://doi.org/10.1016/0001-6160(85)90027-6
  15. J.M. Howe, H.I. Aaronson and R. Gronsky : Acta metall., "ATOMIC MECHANISMS OF PRECIPITATE PLATE GROWTH IN THE Al-Ag SYSTEM-II. High-resolution transmission electron microscopy", 33 (1985) 649-658 https://doi.org/10.1016/0001-6160(85)90028-8
  16. K.T. Moore and J.M. Howe : Acta mater., "Characterization of $\gamma$ plate shaped precipitates in an Al- 4.2 at.% Ag alloy, growth kinetics, solute field, composition and modeling", 48 (2000) 4083-4098 https://doi.org/10.1016/S1359-6454(00)00211-1